
Orwell

A Configuration Management System

For Team Programming

Dave Thomas and Kent Johnson

School of Computer Science
Carleton University

Ottawa, Ontario, Canada KlS 5B6

Abstract: In this paper, we describe the design and
implementation of Orwell, a configuration management
tool for multiperson SmaIltaIk projects. Although the
system described has been implemented for Smalltalk, the
design is applicable to other languages such as C++,
Objective-C or ADA, SmaIltaIk is well recognized as a
productive programming environment for an individual
programmer, but its lack of team support is currently a
major obstacle in using Smalltalk for a large software
project. To support multiperson Smalltalk programming,
Orwell provides both source and object code sharing as
well as version control on a network of personal
workstations. Class ownership is used as the primary
means for dividing work among programmers during the
lifecycle of a project. Orwell also supports groups of
programmers not physically connected to a common file
server. We describe our implementation which preserves
the productive exploratory environment of Smalltalk.
Seamless integration and performance are essential for
Orwell to be accepted and used by Smalltalk programmers.

The research was supported by DREO (Defense Research
Establishment Ottawa).

Permission IO copy without fee all or part of this material is granted provided
thar the copies arc not made or distributed for direct commercial advantage,
rhc ACM copyright notice and the title of the publication and iu dale appear,
and nolicc is given that copying is by pcrmwion of the Associalion for
Computing Machinery. To copy otherwise. or lo republish. requires a fee and/
or specific permission.

c 1988 ACM O-89791-284-5/88/0009/0135 $1.50

1. Introduction

We are developing a family of tools which support object
oriented programming for embedded systems Comas 871.
Embed&d applications are developed by large teams Of
programmers and are subject to strict configuration
management (CM). In this paper we describe Orwell, a
CM tool which supports team programming in Smalltalk.
Orwell is the fitst system specifically designed to support
the software engineering requirements of CM, while
retaining the personal productivity of the incremental
Smalltalk environment. It provides the ability to manage
the source and object code of both classes and
applications. Managing object code reduces the time to
perform system integration and to package an application
release.

1.1 The OOP CM Problem

Numerous tools exist for configuration management such
as [AT&T 781 and RCS [Tichy 851, however none of
these tools have been designed to support object oriented
programming and its associated class library. Indeed
support for package libraries has been identified as one of
the major areas to be addressed by the ADA APSE.
Current CM tools are module oriented, reflecting the unit
of work in existing languages. In an OOL, the unit of
compilation is the method, which is typically much
smaller than a module. While it is certainly feasible to
place every method and class definition in a separate file,
this wastes disk space and leads to an unmanageably large
set of files. The major difference with object oriented CM
is the complex set of dependencies imposed by the
inheritance of both state and behaviour. This problem has
been widely experienced by users of Objective-C
[Schmucker 881. These dependencies cannot be

September 2!5-30,1988 OOPSLA ‘88 Proceedings 135

maintained manually and existing tools such as make file
builders are unsuitable. It is not unusual for large projects
to recompile and relink all of their code to ensure a proper
application build. A common practice is to maintain only
the source code for the system due to the difficulty of
maintaining object code in a CM system. Many
companies have a computer system dedicated to system
builds. While it might be possible to consider such
systems for Objective-C or C++, they are clearly
inappropriate for an incremental environment such as
Smalltalk.

1.2 Smalltalk meets Software Engineering

Introducing CM into any programming project is often
seen as an unnecessary “big brother” overhead which will
further reduce the productivity of the team. For many
Smalltalk programmers an RCS style environment is the
antithesis of exploratory programming and productivity.
Smalltalk already supports the notion of change control
and tracking via its change log and image files. It is the
incremental nature of the Smalltalk environment which
makes it a challenge to build a CM tool acceptable to
both managers and programmers. Smalltalk is well
recognized as a productive environment for an individual
programmer; however, there are currently no integrated
systems which support multiperson Smalltalk
programming. The implementors of Smalltalk-
recognized this problem and introduced the notion of
projects as a way for one or more programmers to work
on different projects while working on the same
system/image. Yet projects do not address the needs of
teams of programmers distributed over a network of
workstations.

In SmaIltalk, the source code and changes are kept in
separate files while the persistent objects and the compiled
code are kept in the image file. This leads to three
monolithic files, in particular the image, which cannot be
shared by members of a team. At present the only way to
perform group programming is to give each programmer a
copy of some common image file and then export and
inport (fileIn, fileOut) source code between the team
members. Recompiling the source is a tedious process,
given that the current ST compiIers were designed for
incremental rather than batch compilation. The
disaibution and management of source and its associated
dependencies is a time consuming and error prone process.
A program librarian must carefully assemble the fileIns
and/or change logs into a new version of the image. It is
also very difficult to manage for a group of more than 6 -
10 programmers!

The lack of CM facilities combined with the cavalier style
of many SmalltaIk programmers is often cited as a major
reason why Smalltalk cannot be used as a serious
development environment. If Smalltalk is to be used in
the large projects for which it holds much promise, a CM
tool such as Orwell is required. Those who today are

using Smalltalk for production applications do so with a
small group of super programmers who must
painstakingly cooperate to share their reusable
components. Recently several projects have tried existing
tools such as RCS and object oriented databases [Maier
861. Unfortunately, both of these tools are only capable
of source code management and source code based systems
require each user to have a monolithic image. Although
databases such as Gemstone are accessible from within
Smalltalk, they are not integrated with the Smalltalk
environment. Like most existing CM systems, they are
seen as a necessary but unproductive overhead to the
programming process.

In this paper, we describe Orwell, a configuration
management tool for multiperson Smalltalk projects
which addresses the problems discussed. Orwell provides
both source and object code sharing as well as version
control on a network of personal workstations. Class
ownership is the primary means used for allocating work
among programmers during the lifecycle of a project. We
extend the scope rules for Smalltalk to provide private
methods in public classes as well as private classes within
applications. Section 2 of the paper describes the team
organization underlying the successful use of the CM
tool. The current implementation of Orwell is described
in section 3.

2. The Orwell Environment

2.1 Organizing the Project Team

Successful configuration management requires more than a
good tool. It requires the organization and management of
a programming team. At a minimum, individual
programmers must be made aware of their responsibilities
as members of the team. It is important that the tool
mesh with the reality of how a software project is
managed. In this section, we briefly describe the new
responsibilities and organization of Smalltalk
programmers who work in the Orwell CM environment.

Programmers are organized into two groups that we refer
to as class programmers and application programmers.
They assume roles of class producers and consumers,
respectively [Cox 861, [Jacobson 871. Class programmers
are responsible for the production of reusable components
which are of general use to the organization. Application
programmers seek to reuse as much code as possible from
the existing class library. Their role is to configure
existing classes, augmenting them where necessary for
their specific application. They work to convince class
programmers to improve their classes so that the amount
of code specific to an application can be reduced. Note
that this doesn’t actually require that programmers be
placed in one group or the other, but it does require them
to wear the appropriate hat.

136 OOPSLA ‘88 Proceedings September 25-30,1988

Programmers have mixed reactions to any management
structure and Smalltalk programmers are rehCtm to give
up control over their personal image. As with any
organizational structure, some programmers are attracted
to a reduced scope of responsibility and others are
reluctant. We have no new insights into managing teams
of talented programmers; however, it is definitely
impossible to do so without a tool. Indeed, an integrated
tool can be used as an incentive to convince reluctant
programmers to participate in a CM system

Class Programmers

Class Programmers need to have long term ownership of
their class or classes if projects in the company are to

benefit from the class library. The reason is simple, every
class needs to be polished and enhanced in order to achieve
the promised goal of reusability. If no one has
responsibility for the quality of a class and associated
control over its evolution, experience shows that each
project (in some cases each programmer) will modify the
class to suit his needs. The programmer is often unaware
of his impact on others or on the future reusability of the
class. Some classes are born perfect, but most need to be
polished, reorganized and augmented based on their use in
different applications. Class programmers need to look to
see how their classes are being used in applications if they
are to improve them. This also encourages classes to be
written and tested independent of a particular application.
The production of a highly reusable class is no less
valuable than the design of a new custom chip!

Application Programmers

Where does this leave application programmers, are they
relegated to the role of second class programmers who
must accept the classes produced by the components
group? Clearly the answer is no, both groups are equally
important. Properly motivated application programmers
are concerned with delivering the solution, not the making
of the ICs. Application programmers should seek to
reduce the component count in their application by
pushing the class programmers for more generalized
classes. Fortunately, there are an increasing number of
application programmers who are more interested in
solving the problems of the user than in writing large
axnounts of new code. Object oriented programming,
through toolkits and common libraries, allows more and
more users to fill the role of an application programmer,

Class Ownership

Orwell is based on the proven concept of individual
module ownership. Ownership allows project managers
to assign responsibility for sections of the project to
specific team members, thus avoiding conflicts in
development and maintenance. Responsibility takes the
form of ownership or control over class definitions and
their methods, such that for each class defined in an
application, a team member (application programmer)

owns the definition and its methods. Applications are
collections of classes and methods as described in detail in
lThomas 881. The granularity of classes makes it feasible
for a programmer to own one or more classes. Team
members are restricted from redefining classes or
adding/modifying methods to classes owned by other
members.

Each existing class in the class library, which is extended
or changed for use in an application, is also controlled by
an application team member who is then responsible for
the new methods. The class’ definition and base methods
are owned by the class programmer responsible for
evolution of the class. By having only one team member
responsible for an existing class in the library, any
communication with the class programmer is then done
by only one member from the application. Thus, each
class programmer can work with a known group of
application programmers to evolve his individual class.
Class ownership is essential for the evolution of a large
class library.

We believe that this organization or a similar one is
required if multiple products are to be developed using a
common class library. It is the separation of roles that is
important while using Orwell; whether or not
programmers are formally classified into a category is an
issue which can only be addressed in the context of a
particular project/organization.

2.2 Releases, Versions and Editions

In Orwell, the stages of application development are
divided into the various releases, versions and editions.
For clarity we will define the meaning of these terms as
they are used in our system. A class consists of a
Smalltalk class definition and a set of methods associated
with that class definition. An application consists of a
collection of classes which make up that application as
well as a set of applications which it requires in one way
or another. We call the applications it requires,
prerequisite applications. An application makes use of
classes in prerequisite applications by using their existing
public methods. An application may also extend a class
from a prerequisites application by subclassing it or
adding application specific methods to that class (see 2.3
Visibility of Classes/Methods). A typical application
consists of 5 - 10 classes and 1 - 4 prerequisite
applications.

Both classes and applications have versions which are
clearly identified points in the lifecycle of a
class/application. The responsibility of deciding when to
create a new version lies with the class/application owner.
A class version consists of a class definition and the
editions of its methods. An application version consists
of a set of class versions and prerequisite application
versions. Developers exchange versions to build an
application/class.

OOPSIA ‘88 Proceedings 137

Applications are the units of software managed within
Orwell. An application is released by its owner to make
it available to the users of that Orwell CM Environment.
Implicitly when an application is released, its classes are
also released to the other users of the system A release
constitutes a set of immutable versions which are subject
to strict CM control and which exist for the lifecycle of
the application, A separate tool, the application packager
is used to construct stand-alone applications IThomas 881
from an application release.

Class editions provide their owners with a complete
development history, Class and method editions are only
visible to their class/application programmer and allow
her to experiment with improvements and bug fmes. The
method version browser allows the programmer to move
quickly between various versions and editions. Multiple
releases of a product can be supported by a single
programmer. For example, a programmer can open one
edition to fix a bug for a version of a class and open
another for a separately released version of the class to
enhance it in some way. When a programmer is satisfied
that an important progress point in the development cycle
has been reached she makes a version of the class from
the appropriate edition. While there may be many
editions of a method, class versions are always constructed
from the current editions of the methods; in other words,
there is no notion of a method version,

The use of releases, versions and editions addresses the
different needs of class/application users and owners. It
allows fine grained changes at the method level without
inflicting an excessive burden on class users. InitialIy we
allowed class users access to method versions, but this
was to cumbersome to manage. Similarly, although
outsiders may have to wait for a new release to gain access
to an application class, we found the management of
individual class releases required too much overhead. If
class releases are really required, it is still possible to
release an application containing just that single class.

Support for Multi-Site Development

In some organizations, geographical location or security
dictate that the developers cannot be connected using a
common file server. The latter situation is a requirement
for our project. By using Orwell at the multiples sites
and allocating ownership of the classes for the project
among all the developers, the creation of a complete
application is controlled. In such a case, each site would
release its application with or without the source code to
the other sites. Once receiving a release, the team at the
site would merge it with their development environment
and thus, still maintain the versions and owners of the
classes and methods,

2.3 Visibility of Classes/Methods

Orwell partitions the Smalltalk name space into a number
of separate applications. This has the benefit of reducing

the name space which must be navigated by application
programmers. It also provides additional information
hiding beyond that already available in Smalltalk. Orwell
provides this capability with an environment, whereas
Modular Smalltalk [Wirfs-Brock 881 advocates a revised
language to support similar notions. Within each
application, the system restricts modification, using
access control, of all public classes and methods to the
application programmer for each corresponding class. If
desired, the system will only show the specification of a
method (its comment) and not its implementation. At
present, we allow read access to the methods of all public
classes. The access and visibility rules are described
below. This part of the system can be easily tailored by
the system manager to support more elaborate security, if
it is required

Public Methods: are available for use by all users in the
system who have access to the class. This is the current
way methods appear in Smalltalk.

Private Methods: are intended for internal use in the
implementation of a class. In Smalltalk, private methods
are defined by a commenting convention. We restrict their
definition and use to the class programmer responsible for
the class.

Application Methods: From time to time, it is necessary
to extend the behaviour of a class in a way which cannot
be achieved via subclassing. Typically, such methods are
for a specific application (otherwise the class .requires
improvement). Application specific methods are only
visible to the application team and the class programmer
responsible for the class (read). Modification of the
methods (read/write) is restricted to the application
programmer in the team who is controlling the class.

Application Classes: Every application develops classes
which are used intemaIly for that application. We limit
the visibility of such classes to team members working
on that application. Each class is owned by one
application programmer, who then assumes the role of
class programmer for the class: It is his responsibility to
enhance and expand the class given the input of the team
in the same fashion as a class programmer enhances his
class.

2.4 Global Objects Considered Harmful

Distributing a class or application between developers and
users becomes overly complicated if global variables or
persistent objeots are used in the class/application. Our
only solution to this problem is to require class
programmers to provide initialize methods for all global,
shared or class variables. These initialize methods are
then executed the first time a class is loaded to restore the
object to its previous state.

Application Browser: FileSystem

fileInFrom:

----FileControlBld instanceHeader0n:
Directory
DOS I
File
Pi

public/private instance/c

fileOutOn: aStream
"File out all the metho

by the receiver to aSt

aStream cr.
self instanceHeader0n: aStr
class selectors asSortedCo1

aStream
cr;
nextChunkPut:

3SS I Dublic/Drivate 1
Configuration Browser: FileSystem

Team Members Applications
... .:.. -:. :i,.,., :,:~:::,:,:,~:~.:.,::s.:.:,:,:~~:::j:.~:~.~

Fred s~~~~l:~~~~~~~~~~~~~~

Dave DataTypes
John System

Application: FileSystem Method Edition: 12Jun88 12:15:36
Remember fred, this edition needed the fix to allow

Classes

ClassHeader
Directory
DOS
File
FileControlBll
FileHandle

Figure 1: An example Configuration browser and Application browser
for the application FileSystem

3. Implementation

3.1 Navigating The CM Environment

As displayed in the above figure, additional browsers have
been implemented to manage class ownership and browse
individual applications, for example.

Configuration Browser

A configuration browser on an application allows the
team manager to assign class ownership between the team
members and to designate releases of the application.
Individual team members use the browser to designate one
of their class editions as an actual version when they reach
a milestone in the class’ development. Menus in each
pane provide the various functions permitted, given the
selected team member, application and/or classes.

Application Browser

Application programmers browse their application
separately with an application browser that is similar to a
traditional class hierarchy browser, but only presents the
classes owned or *tended by the respective application.
Classes can be easily added from the class library to the
browser in order to extend them within the application.
The classes ‘from the application may be viewed with

those of its prerequisite applications if required. The
ability to do this is needed after defining a new
application, which of course has yet to define any classes.
Missing superclasses in the class list (likely if only the
application is visible) are marked using a -. Private and
Public classes are differentiated to clearly &fine which are
included in the interface of the application. Likewise, the
Private and Public methods of each class are separated to
clearly display its interface. A description field at the
bottom of the browser allows comments to be entered that
are specific to the chosen class or method edition.

Version Browser

Any saved method edition or version may be recovered
with a method version browser that presents methods in a
chronological order similar to single user versions of
browsers introduced by Tektronix and Apple. In our case
however, not only the source can be inspected, but the
object code may also be retrieved quickly. Editions may
also be deleted from the database individually or in groups.

3.2 Under The Hood

The Orwell environment is comprised of a configuralion
file for each team member and common class database that
stores the source and object code for all applications,
classes and methods. The object code is stored in a format

OOPSLA ‘88 Proceedings 139

from which it can be easily loaded, thus avoiding the slow
process of compiling the respective source code. The
format of the class database is described below.
Configuration files describe the programmer’s current view
of the common class database and contain a minimal
Smalltalk image sufficient to access the database. The
actual memory resident image is recreated at load time
from the object code stored in the database. The dynamic
construction of the programmer’s image at runtime
eliminates the need for multiple monolithic image files
while allowing code to be shared by a large group of
software developers. This saves considerable space on
disk, since the average image size per team member
increases with the complexity of the application; yet a
large percmtage of each image contains the same compiled
code. In the current system all of the classes/applications
identiiied in the cotiguration file are loaded into memory.

The existing Smalltalk changes file is used to record class
definitions and the source for methods as well as to record
all evaluated expressions. Since the changes file now
contains only a summary of the actions executed by the
user it is called the doit log. It is used by the
programmer to retrace his steps in the development cycle.
There is no longer any need for the Smalltalk programmer
to save an image since all editions are automatically saved
in the database. If for some reason an unusable image has
been created (such as bootstrapping a new user interface),
the system allows the user to revert back to a previous
version or edition.

3.3 Organization of the CM Database

The class database contains the company’s class library
and the classes and methods of its applications. The
database is implemented using a commercial Btree
package. The package provides both rapid access to
variable length records and concurrency control needed for
shared access over the local area network. A user
primitive is used to communicate between the Btree
package and Smalltalk/V286 [Smalltalk/V286 881.
Classes and methods are stored and retrieved using keyed
records. Keys contain the application, class and method
names and a timestamp. The timestamp provides a unique
identifier for each edition. The use of a common database
eliminates class and method naming conflicts within an
application. In this regard, the database serves the same
role as the traditional data dictionary. Access to classes is
controlled by maintaining the owner of each class within
each application in the database.

Classes

A class is stored as a set of records, one for each
component of the class. Each component is stored as a
textual representation of the object. These components
include its type (pointer, indexed, byte array...), its
superclass, its instance and class variable names and its
shared pools. In addition, the metaclass’ type and its

instance variable names are stored with the class. The
class records are retrieved using the application name,
class name and timestamp as the key. Each class edition
contains a descriptive record which is used to explain the
rationale for this edition of the class. The class’ visibility
and release status is contained in a separate entry.

Methods

Stored in the class database for each method is its source
and object code. The source string is stored as is.
Compiled methods are converted into a relocatable
representation by scanning the methods for variable
references, constants and method symbols. A textual
representation of each symbol, variable name or constant
is placed in the literal frame, which follows the actual
bytecodes. The records are stored with a key comprised of
the application name, class name, method name and
timestamp. Each method edition contains a descriptive
record which is used to explain the rationale for this
edition of the method. This can be used to record fixes or
features and for tracking maintenance activities. It
facilitates the location of problem classes/methods which
exhibit a history of problems and which therefore require
redesign and reimplementation. We keep the full source
for each method in a compressed format rather than using
forward or reverse deltas [Tichy 851. Fortunately the
Smalltalk co& is very compact and the available disk
space on todays file servers allows the current 2mb image
to grow to 2OOmb, which is more than adequate for our
projects.

3.4 Dynamic Image Creatioq

The configuration file is used to guide the dynamic
construction of each user’s memory image. To reload a
memory image the object code for each method is read
from the database and linked. The essential methods
needed to accomplish this bootstrapping process are part
of the configuration file and are not stored in the database.

Recreating a compiled method from the stored
representation in the database is a straightforward
transformation of the stored string representations into the
corresponding symbols, variable associations orconstants.
This activity is similar to linking object modules of other
languages. To accelerate the process, each individual
reference is stored with a corresponding type header to
distinguish it from the others. The various types include
method symboIs, class, shared and global variables; plus
all forms of literals, ranp!ng from snings to large integers
and arrays.

Smalltalk programmers expect responsive environments
and will not tolerate excessive compile or load times.
Fortunately, the linkediting process is only performed
when an image is loaded and it can be performed quickly.
To load our current image using our Smalltalk\V286
implementation on an IBM AT attached to a Novell file

140 OOPSIA ‘88 Proceedings September 25-30,1988

server requires just a little more time than that needed to
load the same image from a local disk. Most
programmers load their image one to four times per day so
the delay isn’t significant. This delay is more than an
acceptable price to pay for team programming. There is
no perceived difference in the time to compile methods or
retrieve source code. It is also possible to defer the
loading of some classes or applications until they are
referenced, however the additional effort is only
appropriate for a very large image containing several
disjoint applications.

4. Summary and’ Conclusions

Orwell is a configuration management tool for
multiperson Smalltalk projects. It allows groups of
Smalltalk programmers to develop code from a common
class library. The system as currently implemented has
negligible impact on the productive Smalltalk
programming environment. It provides additional
facilities for information hiding and security which can be
tailored to meet the needs of the development
organization. We have also described an organizational
framework for multiperson software &velopment.

The prototype system has been operational for a number
of months and will be placed in production this fall. We
expect that additional visibility controls are useful such as
those suggested by [Synder 861. Much more support is
required for the software management including software
metrics and bug/feature tracking. Our current solution
eliminates persistent objects by placing the responsibility
for their creation with the class/application owner. Ideally
it should be possible to manage such objects in the same
database. Using Orwell, Smalltalk can now be used to
develop serious embed&d computer applications using a
team of programmers.

References

1. AT&T Source Code Control System. UNIX
System V Programmer’s Guide, Prentice-Hall, Inc.
Chapter 14, pp. 659-700.

2. Cox, Brad J. Object Oriented Programming: An
Evolutionary Approach. Addison-Wesley, Don
Mills, Ontario, 1986.

3. Jacobson, Ivar Object Oriented Development in an
Industrial Environment. OOPSLA ‘87, Orlando,
Florida, October, 1987, pp. 183-191.

4. Maier, D., Stein, J., Otis, A. and Purdy, A.
Developmen&-. of an Object Oriented DBMS.
OOPSLA ‘86, Portland, Oregon, September, 1986,
pp. 472482.

5. Thomas, D. Tools for Object-Oriented Software
Engineering. Internal Technical Note, School Of
Computer Science, Carleton University, October,
1987.

6. Thomas, D.A, and Johnson, K. Encapsulation &
Instantiation of Smalltalk Applications. Technical
Note, School Of Computer Science, Carleton
University, March, 1988.

7. Schmucker, K. Personal communication, January
1988.

8. SmalltalklV286 Object-Oriented Programming
System (OOPS), Tutorial and Programming
Handbook. Digitalk Inc., 1988.

9. Synder, Alan Encapsulation and Inheritance in
Object-Oriented Programming Languages. OOPSLA
‘86, Portland, Oregon, September, 1986, pp. 38-45.

10. Tichy, Walter F. RCS - A System for Version
Control. Software Practice and Experience, Vol.
15(7), July, 1985, pp. 637-564.

11. Wirfs-Brock, A. and Wilkerson, B. An Overview of
Modular Smalltalk. OOPSLA ‘88, San Diego,
California, September, 1988.

September 25-30.1988 OOPSIA ‘88 Proceedings 141

