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Abstract Two varieties of object-oriented systems exist: one 
based on classes as in Smalltalk and another based on 
exemplars (or prototypicai objects) as in Act/l. By converting 
Smalltalk from a class based orientation to an exemplar base, 
independent instance hierarchies and class hierarchies can be 
provided. Decoupling the two hierarchies in this way enables 
the user's (logical) view of a data type to be separated from the 
implementer's (physical) view. It permits the instances of a 
class to have a representation totally different from the 
instances of a superclass. Additionally, it permits the notion of 
multiple representations to be provided without the need to 
introduce specialized classes for each representation. In the 
context of multiple inheritance, it leads to a novel view of 
inheritance (or-inheritance) that differentiates it from the more 
traditional multiple inheritance notions (and-inheritance). In 
general, we show that exemplar based systems are more 
powerful than class based systems. We also describe how an 
existing class based Smalltalk can be transformed into an 
exemplar-based Smalltalk and discuss possible approaches for 
the implementation of both and-inheritance and or-inheritance. 

l Introduction 

Although Smalltalk [Goldberg 83] is a small, well  
designed language with a rich programming environment, it 
lacks some of the generality that might be expected of an 
object-oriented system. In particular, it fails to distinguish 
between class hierarchies and instance hierarchies. For a great 
majority of the classes, the distinction is not important; 
however, there are some important anomalies and 
consequences. An exemplar based system [LaLonde 86] can 
distinguish between the two and properly handle these 
anomalies. It can also be used to support the "classical" class 
viewpoint. 
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In this paper, we detail some of the Smalltalk deficiencies 
that are a direct result of its class based orientation and describe 
how a more general and flexible system is obtained by 
changing its underlying organizational base from classes to 
exemplars. The work is relevant to the evolution of any 
object-oriented system including the Flavour system in Lisp 
[Weinreb 807, Loops [Bobrow 81], Trellis [O'Brien 857, and 
more conventional languages being retro-fitted with 
object-oriented facilities; e.g., C [Cox 84], Pascal [Tesler 847, 
Forth [Duff84], and Prolog [Shapiro 83, Vaucber 867. 
Exemplar based systems include Act/l[Lieberman 81, 
Smallworld [Laffgl],  Thinglab [Borning 827, and Actra 
[Thomas 857. 

This work is part of a research and development project 
concerned with the design and implementation of Aclra 
[Thomas 85], an object-oriented multiprocessor system based 
on a version of Smalltalk that supports exemplars and actors 
(concurrently executable objects). Actra is targctted for use in 
industrial applications such as flexible manufacturing, 
simulation and training, command and control, CAD/CAM and 
project management. An existing uniprocessor version of AcWa 
supporting actors is currently being migrated to a 
multiprocessor and converted from a class based system to an 
exemplar based system. 

2 Classes Versus Exemplars 

Intuitively, a class is a data type positioned within an 
inheritance hierarchy. The hierarchy describes both the 
relationship between the class and other classes (the inheritance 
of class variables and class methods) and the relationhip 
between its instances and other instances (the inheritance of 
instance variables and instance methods). It can be described 
by 

1. an object denoting the superclass, 
2. a set of class variables and pool variables (public to 

instances and classes), 
3. a set of class instance variables (private class 

representation), 
4. a set of class methods (class operations), 
5. a set of instance variables (instance representation), 
6. a set of instance methods (instance operations). 

Class and pool variables are extra to the class notion. 
Making variables public is a function of the compiler symbol 
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table lookup routine, not the basic class mechanism. Classes 
simultaneously describe two hierarchies: 

I. A class h ie rarchy  that relates the different 
classes. Each class inherits all class variables and 
class methods of the classes higher up in the 
hierarchy; i.e., from the superclass, its superclass, 

2. An instance hierarchy that relates the different 
instances of the classes in the class hierarchy. 
Each instance inherits all instance variables and 
instance methods of the instances associated with 
the classes higher up in the hierarchy. 

The two hierarchies are clearly intertwined in a one-to-one 
correspondence. As we will see, it is the strong coupling 
between these two hierarchies that diminishes the fiexibihty of 
the system. 

Intuitively, an exemplar (or prototype) [Borning 81] is 
an example instance (also a sample or prototypical instance) 
which can serve as a role model for other instances. It is 
completely described by 

1. an object denoting its superexcmplar, 
2. an object denoting its class, 
3. a set of variables (the representation), 
4. a set of methods (the operations). 

Inheritance (both for variables and methods) proceeds 
along the superexemplar chain, not along the class hierarchy. 
The class is maintained to provide access to classification 
information, class variables and other exemplars. To define a 
new data type in a hierarchy, we must create two exemplars: a 
class exemplar  and an instance exemplar. Typically, the 
class exemplar will inherit from another class exemplar and the 
instance exemplar from an instance exemplar. Thus, the two 
hierarchies are distinct. 

In the exemplar model, a class can have any number of 
exemplars associated with it, each with a different 
representation but typically with the same methods (although 
implemented differently to reflect the different representation). 
One of these is nominated the s tandard exemplar. Instances 
are obtained by cloning exemplars (typically, only instance 
exemplars are cloned). Classes in the exemplar model can also 
provide new instances: however, this is achieved by having the 
class clone its standard exemplar. Conventional Smalltalk 
classes can be viewed as classes with exactly one examplar. 
The notion of multiple representations can be accommodated 
with different exemplars instead of with different subclasses. A 
case for multiple representations might be a bit map which can 
either be in a standard representation, a compact representation 
(run-length encoded), or a disk resident representation. 

For a simple but more detailed example, consider the 
definition of a class Boolean with two instances t rue  and 
false. Figures 1 presents a class based design while Figure 2 
presents an exemplar based approach. For efficiency reasons, 
each instance is given a different implementation of the 
methods. For illustration, the and: method for each instance is 
shown below: 

"for true . . . .  for false" 
and: anotherBoolean and: anotherBoolean 

"anotherBoolean ^false 

In a class based system, the only way to implement and: 
for t rue differently from and: for false is to have them be 
members of distinct classes. Consequently, class True is 
defined specifically for its one instance true (similarly for class 
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False and instance false). Although not particularly useful, it 
would be possible to permit multiple instances of t rue and 
false.  

In the exemplar based system, a class exemplar for 
Boolean is created along with two instance exemplars: one for 
t rue  and one for false. Class Boolean inherits from class 
Object whereas the instances t rue  and false inherit from 
ObjectExemplar (a typical object). 

3 Why The Class Based Model Is Inadequate? 

Because the exemplar based model permits the class 
hierarchy to be decoupled from the instance hierarchy, it is 
clearly less restrictive. This in itself is not sufficient to indict 
the class based models because this additional flexibility may 
not be needed. Lacking such flexibility, however, has some 
obvious implications (in increasing order of importance). 

1. All instances of a specific class must have identical 
representations and methods. Thus, instances 
cannot have specialized methods and multiple 
representations for instances are not possible, 
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2. Specializations of classes with individualized 
representations are not allowed. Subclasses must 
have a representation that includes the superclass 
representation. 

3. Since the class hierarchy and instance hierarchy 
are intertwined by design, either the class 
hierarchy must be made to conform to the instance 
hierarchy or the instance hierarchy made to 
conform with the class hierarchy. Either can 
involve unacceptable tradeoffs. 

The multiple representations problem (case 1) can be 
resolved by introducing distinct classes for each representation. 
The simple solution (where possible) is to make each new class 
a subclass of the original as was done in the Boolean example. 
Because of case 2, this is not always possible. To avoid 
inheriting the representation of the original class, it may be 
necessary to make the new class a subclass of Object (or some 
other logically unrelated class). If we do, this is an example of 
case 3 where the logical hierarchy was made to conform with 
the instance hierarchy. Because of the importance of this last 
case, we will discuss it in more detail with illustrated examples. 

As users of an object-oriented system, it is important to 
understand the relationships between the classes and the 
operations relevant to the instances without having to resort to 
studying the implementation. When a class is described as a 
specialization of another class, we expect the specialization 
to have certain properties. 

1. It typically has more operations for its instances; 
e.g., specializing Object to Integer introduces 
operations + and -. In unusual cases, operations 
may be removed but this is not typical. 

2. It may have a special-purpose representation for 
more efficient storage and/or access. 

3. It should be possible to treat the instances of the 
specialization as an instance of the more general 
type. 

Implementers of new classes must assume a dual 
responsibility. Since they are designing classes for the user 
community, they must attempt to have them satisfy the above 
properties. However, as designers, they must also attemp.t to 
realize the intended behaviour as efficiently as possible. 
Generally, this means sharing as much as possible from 
existing classes, using the most efficient representations and 
algorithmns, and perhaps even resorting to a trick or two to 
achieve the goal. The implementers'  concerns are quite 
different from the users' concerns. Problems arise as soon as 
the two concerns begin to conflict. 

For illustration, consider a subset of the Collection classes 
available in the Smalltalk system. Figure 3 illustrates a user's 
view of these classes whereas Figure 4 presents an 
implementer's view. Before we begin to analyse the classes, 
we would like to emphasize that the resulting organization is a 
consequence of the class base, not a consequence of poor 
design choices. 

First, consider classes Set and Bag. Logically, Set is a 
specialization of Bag (a bag is a set that allows duplicates). 
Both should have the same set-like operations such as union, 
intersection, difference. However, they must have slightly 
different semantics for the insert operation. Bags, for example, 
insert all submissions. Sets, on the other hand, permit the 
insertion only if no duplicate exists; i.e., inserting a duplicate 
has no effect. A straightforward implementation for Set would 

Keyed / *  ~ Unkeyed 

(Arl~trsr,/ Iteys) [ Bag [ fl~ellmtm O1~) 

OrderedCollection ] (lutne x~m) (No ~ekatm) 

(No st:put:) Og~mslom NOT Autmuflc) 

A Subset of the Classes: A Logical View 

Figure 3 

A Subset of the Classes: A Physical View 

Figure 4 

simply inherit the representation for Bag; e,g., if  Bag 
maintained counts for the number of duplicates, this count 
could be restricted to 1 for Sets. A better representation, 
however, would likely remove the counts altogether -- a notion 
not possible with the class model unless the logical hierarchy is 
changed. The Smalltalk solution was to make both Set and Bag 
subclasses of Collection. 

The reason for the conflict is that two hierarchies are 
involved: a class hierarchy that describes a Set as a special case 
of a Bag and an instance hierarchy that implements a set 
instance as a special case of a collection instance. If the instance 
hierarchy is forced to match the class hierarchy, we end up 
with an understandable relationship but an inefficient 
implementation. Conversely, if the class hierarchy is forced to 
match the instance hierarchy, we end up with a relationship that 
is logically wrong but nevertheless space efficient. 
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The above is not an isolated example. When the logical 
hierarchy (the class hierarchy) and the physical implementation 
hierarchy (the instance hierarchy) are forced to be the same, the 
physical hierarchy usually wins out. For another example, 
Dictionaries in Smalltalk are an obvious generalization of 
Arrays iv which the indices are arbitrary objects. Logically, 
Array should be a subclass of Dictionary. Currently, however, 
Dictionary is a subclass of Set simply because it happens to be 
using the Set representation. This time the class hierarchy was 
forced to match the instance hierarchy because it was 
convenient to inherit a specific existing representation. Since 
Smalltalk is class based, a future change in the rel~resentation 
could entail a change in the relationship between classes. 

The data type community has long advocated a separation 
between what a data type does (its operations and their 
semantics) and its implementation (its representation and 
coding). A similar notion is needed for object-oriented 
systems. Classes should be organized in a manner that reflects 
the logical relationships of the members. This relationship 
should not change every time an implementation is modified. 

4 Why Exemplars Are Desirable? 

It should be clear that exemplars can easily be used to solve 
each of the above problems. The logical relationships are 
maintained via class exemplars and the implementation 
strategies are realized via instance exemplars. 

For example, class Set can be made to inherit from class 
Bag to establish the logical relationship between the two. On 
the other hand, the set's instance exemplar can be made to 
inherit from the collection's instance exemplar to maintain the 
existing implementation. The same approach could be used for 
Arrays and Dictionaries. 

The exemplar base is superior primarily because it permits 
a separation between users and implementers. In the short 
term, such separation may not matter but in the long term, it 
will be crucial. As the applications and additions begin to 
accumulate in public libraries, users will have neither the time, 
the patience, or the ability to determine how to use a new 
family of data types by navigating the implementation. More 
likely, useful help systems will be designed that help document 
the essential features and operations of important classes. 
When the time comes, users will find it much easier to 
understand and remember relationships that are logical rather 
than physical; i.e., side effects of specific implementation 
design decisions. 

Unlike the class base, the exemplar base provides a more 
malleable environment for changes. Changes to the 
representation of instance exemplars can be accommodated 
without impacting the class hierarchy. Conversely, the class 
structure can be modified without impacting the instances. 
Evolutionary changes are handled much better by the more 
flexible exemplar base. 

$ Exemplars Support Multiple Representations 

To illustrate the multiple representation issue, consider the 
definition of Lisp-style lists with two distinct representations: 
one for empty lists and another for non-empty lists (see 
Figure 5). 

The List class could be defined by cloning an existing class 
exemplar. The empty list exemplar is defined with an empty 
representation (no instance variables) and all the usual methods 
such as f i r s t  and res t  (both reporting error), e m p t y ?  

! I 

d e n o t e s  i n s t a n c e  r e l a t i o n s h i p s  
d e n o t e s  i n h e r i t a n c e  r e l a t i o n s h i p s  
d e n o t e s  c l a s s e s  
d e n o t e s  i n s t a n c e s  

Lists Wi th  Multiple Representations 
Figure $ 

(returning true), etc. Similarly, the non-empty list exemplar is 
defined with a two component representation (a fwst part and a 
rest part) along with the same methods as above. In this case, 
however, first would return the first part, rest the rest part, 
empty?  would return false, etc. Both instance exemplars 
would be initialized with the List class as their denoted class. 
They would also be added to the List class as a member of the 
set of instance exemplars with the empty list exemplar 
designated the standard exemplar. Additional methods might 
also be a dcl_ed to the List class to make it more complete; e.l~., 
method e m p t y  which returns a clone of the empty hst 
exemplar. 

There are advantages to using several exemplars instead 
of the traditional one. First, their use can play a significant role 
in speed optimizations; e.g., in the list example above, 
instances no longer need to perform run-time conditional 
checks to distinguish between empty lists and non-empty lists. 
Second, they provide a realization of multiple representations; 
e.g., by permitting packed and unpacked representations 
without adding to the already large class name space, by 
permitting separate memory-based and disk-based 
representations -- options that could play an important role as 
object-oriented databases are developed. The ability to provide 
multiple representations is of particular importance in industrial 
applications such as CAD/CAM or flexible manufacturing. 

An argument that is often presented is that the above 
example can just as easily be conswacted with the class base by 
designing NonEmptyList and EmptyList as specializations of 
List, This approach is fine as far as it goes but difficulties 
appear as soon as further specializations are designed. For 
example, suppose we wish to introduce a new class, 
AnnotatedList say, as a specialization of List (it has additional 
special purpose instance variables) with its two corresponding 
ins tance  exempla r s :  E m p t y A n n o t a t e d L i s t  and 
NonEmptyAnnotatedList. 

We expect NonEmptyAnnotatedList to be below 
NonEmptyList (also EmptyAnnotatedList below EmptyList) in 
order to inherit the many methods provided. However, there is 
no convenient location in the hierarchy for class AnnotatadList. 
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Several designs are possible (see Figure 6). Each has its 
own deficiencies. Placing AnnotatedList between List and its 
two specializations (Figure 6a) causes standard lists to be 
erroneously viewed as annotated lists. Placing it below List and 
beside its two specializations (Figure 6b) has the implication 
that EmptyAnnotatedIAst, for example, is not an AnnotatcdList. 
The only remaining solution is to place AnnotatedIAst below 
List (Figure 6c) with EmptyAnnotatedList  and 
NonEmptyAnnotatedList below AnnotatedList. However, this 
is unacceptable because virtually all standard list methods must 
be duplicated. The only acceptable solutions either use case (b) 
with method i sKindOf :  for EmptyAnnotatedList and 
NonEmptyAnnotatedList modified to return t rue  if its 
parameter is AnnotatedList (a compromise that makes the 
incorrect physical hierarchy appear logicall~ correct) or use 
multiple inheritance (case (b) modified so that 
EmptyAnnotatedList and NonEmptyAnnotatedList additionally 
inherit from AnnotatedList). 

To summarize, exemplars can be simulated with the class 
based systems to provide more efficient response but multiple 
levels of exemplars becomes increasingly problematical. The 
issue does not arise in exemplar based systems sinces classes 
and instances form separate hierarchies. 

6 Representation Of Exemplars 

Two related but fundamentally different techniques for 
representing exemplars are possible (see Figure 7):  one 
partitions exemplars into two physically distinct components 
each capable of being manipulated as objects; the other 
encapsulates the two components into one using a sharing 
mechanism. 

(b) Objects With Shared Components  

denotes an object pointer 

Representation of Exemplars 
Figure 7 

In the first approach, rather than maintain all relevant 
information about exemplars in a class, an exempla r  
d e s c r i p t o r  is used to fulfill the equivalent role. The 
representation of objects is left unchanged to minimize 
modifications to the existing system but the class object pointer 
is replaced by a pointer to the exemplar descriptor. The class 
associated with an exemplar and the superexemplar is 
maintained in the descriptor along with the owner of the 
descriptor. An instance is an exemplar if and only if it is the 
owner of its respective exemplar descriptor. Cloning an 
instance involves copying the instance but not the exemplar 
descriptor. Creating a new exemplar involves creating both a 
new instance and a new exemplar descriptor. 

In the second approach, exemplar descriptors are not 
permitted to be individual objects. Instead, exemplars are 
objects with a distributed representation. All instances cloned 
from the same exemplar are viewed as containing and sharing 
the same exemplar descriptor information; i.e., those fields that 
used to be part of the exemplar descriptor in the fhst approach 
are now part of each instance but each field exists only once for 
the exemplar and its clones. In more general exemplar based 
systems such as described in [Lieberman 86], one could 
envisage providing support for user definable distributed 
objects with shared components. Although attractive in its own 
right, such increased generality is not required to support the 
basic notions of exemplars. 

With some effort, the former technique can be viewed 
primarily as a change in terminology; i.e., the class is referred 
to as a descriptor for an instance and the meta-class as a 
descriptor for the class. Additional new objects are required to 
supplant the class objects that became descriptors. However, 
the approach is unsatmfying because the information logically 
associated with the exemplar is in a distinct object. 

The second technique removes this objection and 
associates the information directly with the exemplar (and in 
fact, any instance cloned from that exem]>.lar). It does require 
the introduction of object subparts visible by the garbage 
collector but inaccessible as distinct Smailtalk objects. A 
change in the compiler is also requir~ to make the additional 
fields visible and accessible and to generate new bytecodes that 
load and store indirect. This latter technique is being used in 
Actra. 
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7 M a k i n g  Smal l ta lk  E x e m p l a r  Based 

The inheritance mechanism required to support an 
exemplar based Smalltalk is equivalent to the class based 
inheritance mechanism except that inheritance takes place 
through exemplars rather than classes. As shown in Figure 8, 
for example, exemplar E2 with additional instance variables B 1 
and B2 (its local representation) inherits instance variables A1, 
A2, and A3 from exemplar El. 

II 
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To convert to an exemplar based system, changes to all 
three components of the existing class based system are 
required: the image, the virtual machine, and the Smalltalk 
library. 

Image Changes: Remove all class instance variables in 
order to ensure that all classes have a uniform representation. 
Change each class to an exemplar descriptor and create an 
instance exemplar for each descriptor (there ts no need to create 
a new one if one already exists). Additional new objects are 
required to supplant the class objects that became descriptors. 
Similarly, change each recta-class to a descriptor for each class. 
Each descriptor requires additional fields to reference the owner 
(the exemplar) and the class to be associated with the exemplar. 
As explained above, the descriptor is not directly accessible as 
a separate Smalltalk object. Dictionary Smalltalk should be 
expanded to include both named instances and classes; e.g., 
both Object and anObject, Set and aSet, ... should be available. 

Virtual  Machine Changes: Implement the special 
bytecodes (load and store indirect) that provide access to the 
descriptor information. Direct kernel references to class objects 
must be modified to accommodate the shift to exemplars; e.g., 
the new primitives should be modified to perform c l o n e  
operations. 

Smalltalk L ibra ry  Changes: The compiler must be 
modified to provide direct access to the descriptor information 
from arbitrary objects. Methods previously inherited by classes 
can then be rccompiled as methods associated with anObject. 
Similarly, methods previously inherited by metaclasses should 
be recompiled with Object. Careful changes must done on these 
methods to separate the strong coupling that exists between 
classes and recta-classes. Clone methods must be added to 
anObject to enable duplicate objects to be created; the n e w  

methods in the class must be modified to clone its standard 
instance exemplar. The browser can be modified in a simple 
way by having the switch that distinguishes between instances 
and classes present instance exemplars (anObject, aSet, ...) as 
disctint from class exemplars (Object, Set, ...). Selective 
textual name changes will also be required from 'class' to 
'exemplar'; e.g., method names s u p e r e x e m p l a r  and 
subexemplars  instead of superclass  and subclasses, etc. 

Perhaps the greatest difficulty is coordinating the above 
changes into a manageable order. Because it is a bootstrapping 
process, a staged approach is required. 

8 And-Inher i tance :  (Tradi t ional  Mul t ip le - Inher i tance )  

Multiple-inheritance is a technique for the management of 
objects constructed by combining two or more different kinds 
objects (the super-objects) .  For future comparison with a 
technique to be discussed later, we will call this 
and- inher i t ance .  The composite object has the instance 
variables of all existing super-objects in addition to extra 
instance variables introduced locally (the l o c a l  
r e p r e s e n t a t i o n ) .  In the existin~ scheme for multiple 
inheritance in SmaLltalk, conflicts arise when distinct instance 
variables or methods in different supers have the same name. 
An instance variable conflict requires a name change to resolve 
it. A method conflict is resolved by creating a local method that 
overrides the conflicting methods. Typically, a specific method 
(or combination of methods) is copied by the user to construct 
the new local method. 

The usefulness of multiple-inheritance is supported by 
several existing systems. For example, Traits [Curry 84], 
Loops [Bobrow 84], and Flavors (Weinreb 80] use it 
extensively. Although Smalltalk supports it [Borning 82], it is 
a relatively recent introduction; e.g., no existing classes are 
currently defined using multiple-inheritance, it could have been 
used, for example, to define ReadWriteStream by inheriting 
from both ReadStream and WriteStream. Unfortunately, the 
current implementation is relatively unwieldy since methods 
inherited from classes other than the primary super must be 
physically re-compiled in the new environment (actually 
defeating one of the primary reasons for inheritance -- code 
sharing). 

In Smalltalk, the layout of the instance variables is 
managed using a contiguous representation; i.e., fields for 
the accessible instance variables are stored in neighbouring 
storage location. By contrast, other systems such as Traits 
[Curry84] use a d i s t r i b u t e d  or non-contiguous 
representation. More flexible systems [Lieberman 86] are 
likely to use both appmacbes. 

A contiguous representation that concatenates the 
respective instance variables can be made to work without 
copying or recompiling methods by 

1. insisting that local methods have access only to the 
local representation, 

2. associating a unique base with each method 
accessible from the new exemplar, and 

3. providing a repository for this base in active 
contexts. 

The first requirement actually eliminates instance variable 
conflicts because instance variables of inherited exemplars 
cannot be directly manipulated, even though they exist in the 
object. Additionally, this property ensures that exemplars are 
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provided with a greater degree of modularity than existing 
Smalltalk objects. This deviance from the Smalltalk semantics 
is expected to have little impact -- it can always be 
circumvented by defining explicit accessing methods. 

t) riFi-,, 
Field A2 I Ofl~t  i I l l Fi'ld sz I o: IO . I / 

Etemplnr E1 with MeUlodl l l gnmP I l r  I~1 wit 
MI lad  M2 J k M3 Iml | 

.J ~ )  
I 

Field AI (inherited) Off l l l  S 
Field A2 (Inherited) oflr i l l  i 
Field A3 (inherited) OI l~ l  1 
Filld I I  (Inherlled) o r i e l  ] 
Field |2  (inherited) Offa l  4 
Field C! (Iocnl) ~ $ 

Exemplar E3 with Metheda 
MS and MS 

o., I1 OffluN i 

/ 
! , f 

Multiple Inheritance 
(And-Inheritance) 

Figure 9 

The second and third requirements provide the mechanism 
for "position independent" refenmces to instance variables. The 
base  is the offset for that portion of the representation 
accessible by the method; i.e., the local representation. In 
Figure 9, exemplar E3 inherits from both exemplars El and 
E2. The figure illuswates that with respect to exemplar E3 and 
any of its clones, MI accesses its instance variables using base 
0, M3 using base 3, and M5 using base 5 (to choose a few 
typical cases). Although not explicitly shown, E2 and its clones 
would be using a different set of bases; e.g., M3 would be 
using base 0. 

Because the bases are not unique to the methods, a small 
tree structurally isomorphic to the inheritance structure (a 
dictionary tree) must be maintained with each exemplar to 
record the distinct bases. Intuitively, each node of this tree 
corresponds to one exemplar in the inheritance hierarchy and 
contains both a base and the method dictionary associated with 
that exemplar. For the simple inheritance case, the Irec for a 
particul~ exemplar can share the super czemplar's tree. In 
generm, me amount of storage needed to store this information 
is negligible if a suitable shamble structure is used. 

When method lookup is performed, the base associated 
with a given method is extracte, d and stored into the 
corresponding active method context to enable correct n ~  to 
the local representation. Instance variables of the exemplar are 
then accessed by adding the instance variable offset to the base 
of the method. The method lookup for super messages begins 
with a search in the exemplar containing the method (each 
method can specify the unique exemplar with which it is 
associated) and simply adds the new base found to the current 
base to obtain an updated base. 

The cont iguous  representation does not successfully 
handle cases involving exemplars with varying numbers of 
fields. Such representations are used for representing arrays 
and collections, for example. Consider the situation of simple 
exemplar inheritance as shown in Figure 8 but where both the 
inherited exemplar E1 and the new exemplar E2 have a varying 

number of fields; e.g., one collection-like object is trying to 
inherit from another. This contiguous representation is too 
simplistic to accomodate more than one varying length field in a 
new exemplar (at the end). Of course, it could be generalized 
but the result would require substantial modifications to the 
Smalltalk virtual machine code for field accessing. 

A distr ibuted representation can be used to circumvent 
this problem. In Figure 8, rather than expanding the fields of 
the inherited exemplar El into the new exemplar E2, an expficit 
instance of El can be created and a pointer to that instance kept 
in E2 (instead of the actual instance variables). E2 is then 
viewed as a composite object with subpart El. As the method 
lookup mechanism climbs the inheritance hierarchy, the 
corresponding subpart structure is tracked. When the desired 
method is found, it is executed on the corresponding subpart. 

The approach is made compatible with the above technique 
that maintains bases by using constant zero for the base. 
References to self must be resolved by locating the outermost 
containing exemplar. This can be done by keeping 
outermost-self  in addition to the current base in the active 
context. Messages sent to arbilrary objects must create a new 
outermost-self (the receiver); messages to self maintain the 
existing one. If the push receiver bytecode is revised to push 
outermost-self, all message sends can be handled uniformly 
(the first case). Instance variable access, on the other hand, 
must use the local self. 

In our initial implementation, we are using only the 
contiguous representation. Since the previously mentioned 
problem situatwns are not currently handled by the existing 
Smalltalk implementations (by design), this approach will 
maintain the existing functionality while minimizing the impact 
to the existing implementation 

Obvious changes are needed in the method lookup 
mechanism to handle sharable trees of methods/bases (and the 
corresponding arithmetic to propagate bases) and in the meth.od 
send primitives to encode the base and the current exemplar 
into the active context. Instance variable access must also be 
relative to the base associated with the active context. Super 
messages must also be modified to accommodate the above. 
Note that this implementation strategy can be applied to both 
class based and exemplar based Smalltalk systems. 

8. Or-Inheritance: A New Dimension 

The additional ability to associate several distinct instance 
exemplars with a class (the multiple representation capability) 
introduces the potential and perhaps even the need for a new 
mode of sharing. 

To introduce the new mode, recall the example of 
Lisp-style lists with two representations realized by an emp.ty 
list exemplar and a non-empty, list exe.mp!ar.Desi..gmnlg a single 
new exemplar that is intenctexl to inncrit from list instances 
(without being specific) must inherit either from the empty list 
exemplar or the non-empty list exemplar but not both. The 
notion is illustrated by Figure I0. Contrast this approach with 
that suggested by Figure 6 where t w o  corresponding 
annotated list exemplars (an empty one and a non-empty on..e) 
are provided, each inheriting from the corresponding hst 
exemplar. 
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This kind of inheritance ( o r - i n h e r i t a n c e )  is quite 
different from the traditional kind of multiple inheritance 
(and-inheri tance) .  Or-inheritance expects the alternative 
exemplars to have the same methods (distinctions are also 
permitted) but and-inheritance views such common methods as 
conflicts that must be resolved. 

The fundamental concern in providing an implementation 
mechanism is the code sharing issue; e.g., multiple 
instantiations of compiled annotated list methods should be 
avoided. 

The simplest approach is to use a distributed solution. In 
our example, an annotated list is simply the local representation 
plus a pointer to one of the two list instances. Cloning an 
annotated list requires a clone not only of itself but also of the 
list that is now a subpart. In general, all subparts must be 
cloned. Without or-inheritance, super-objects in the exemplar 
are unique; with or-inheritance, selected super-objects are 
indeterminate (in the descriptor portion) but resolved in the 
instance itself (the subpart pointer). Method lookup is 
consequently more complicated. As with and-inheritance, 
ou te rmos t . s e l f  must be maintained if the object and its 
subparts is to be viewed logically as one object. This approach 
is similar to delegation [Lieberman 86] although delegation 
does not attempt to maintain the "one object viewpoint". 

In the absence of and-inheritance, a contiguous 
representation supporting or-inheritance (see Figure 11) could 
be made to work by (1) overlaying the instance variables of 
the inherited alternatives and (2) maintaining an object pointer 
to the subpart examplar chosen for this specific object. The 
object pointer in this case is used only for method lookup 
purposes. Since the instance variables of the subpans are local 
(the representation being contiguous), there is no need for 
distinguishing self from outermost-self. The approach is clearly 
inefficient if the different inherited exemplars have widely 
differing sizes. 

Inheritance with Multiple Representations 
(Or-lnheritance) 

Figure 11 

In the presence of and-inheritance, bases are also needed. 
The combination of both and-inheritance and or-inheritance as 
illustrated in Figure 12 poses no additional difficulty. 
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9 Conclusions 

We have discussed the differences between class based 
systems and exemplar based systems and shown that the latter 
have significant advantages. In particular, the exemplar based 
systems permit the class hierarchy to be divorced from the 
instance hierarchy. This enables the user's viewpoint to be 
separated from the implementer's view providing additional 
fine control of design and implementation considerations, it 
also permits multiple representations by enabling distinct and 
arbitrarily different instance exemplars to be associated with the 
same class. 

By converting a class based Smalltalk into an exemplar 
based system, the original class hierarchy is factored into two 
distinct hierarchies: the instance hierarchy, since it is the 
implementation hierarchy, can be maintained as it exists; the 
new class hierarchy, the logical hierarchy, can be reorganized 
after the fact to display the more intuitive and expected logical 
relationship. The new capability permits Set, for example, to be 
a specialization of Bag and Dictionary to be a generalization of 
Array while still maintaining the existing representation and 
methods which are inherited via the instance hierarchy. 

We developed the notion of or-inheritance as distinct from 
and-inheritance and discussed associated implementation issues 
from the point of view of both contiguous and distributed 
representations. The Actza project is currently implementing an 
exemplar based Smalltaik that focuses on contiguous 
representations. 

Exemplars permits evolution in directions that were not 
previously possible. It also provides clues as to how existing 
systems like the Lisp Flavour system might be extended to 
provide sharing both at the source and code level. 
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