
An Exemplar Based Smalltaik
W i l l R. L a L o n d e , Dave A. T h o m a s a n d J o h n R. Pugh

School of C o m p u t e r Science
C a r l e t o n Unive r s i ty

O t t awa , O n t a r i o , C a n a d a K I S 5B6

Abstract Two varieties of object-oriented systems exist: one
based on classes as in Smalltalk and another based on
exemplars (or prototypicai objects) as in Act/l. By converting
Smalltalk from a class based orientation to an exemplar base,
independent instance hierarchies and class hierarchies can be
provided. Decoupling the two hierarchies in this way enables
the user's (logical) view of a data type to be separated from the
implementer's (physical) view. It permits the instances of a
class to have a representation totally different from the
instances of a superclass. Additionally, it permits the notion of
multiple representations to be provided without the need to
introduce specialized classes for each representation. In the
context of multiple inheritance, it leads to a novel view of
inheritance (or-inheritance) that differentiates it from the more
traditional multiple inheritance notions (and-inheritance). In
general, we show that exemplar based systems are more
powerful than class based systems. We also describe how an
existing class based Smalltalk can be transformed into an
exemplar-based Smalltalk and discuss possible approaches for
the implementation of both and-inheritance and or-inheritance.

l Introduction

Although Smalltalk [Goldberg 83] is a small, well
designed language with a rich programming environment, it
lacks some of the generality that might be expected of an
object-oriented system. In particular, it fails to distinguish
between class hierarchies and instance hierarchies. For a great
majority of the classes, the distinction is not important;
however, there are some important anomalies and
consequences. An exemplar based system [LaLonde 86] can
distinguish between the two and properly handle these
anomalies. It can also be used to support the "classical" class
viewpoint.

This research has been supported by DREA, DREO, and
NSERC.

Permission to copy without fee all or pan of this material is granted provided
that the COl~CS ate not made or distributed for direct commercial advantage.
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

6c~ 1986 ACM 0-89791-204-7/86/0900-0322 75¢

In this paper, we detail some of the Smalltalk deficiencies
that are a direct result of its class based orientation and describe
how a more general and flexible system is obtained by
changing its underlying organizational base from classes to
exemplars. The work is relevant to the evolution of any
object-oriented system including the Flavour system in Lisp
[Weinreb 807, Loops [Bobrow 81], Trellis [O'Brien 857, and
more conventional languages being retro-fitted with
object-oriented facilities; e.g., C [Cox 84], Pascal [Tesler 847,
Forth [Duff84], and Prolog [Shapiro 83, Vaucber 867.
Exemplar based systems include Act/l[Lieberman 81,
Smallworld [Laffgl], Thinglab [Borning 827, and Actra
[Thomas 857.

This work is part of a research and development project
concerned with the design and implementation of Aclra
[Thomas 85], an object-oriented multiprocessor system based
on a version of Smalltalk that supports exemplars and actors
(concurrently executable objects). Actra is targctted for use in
industrial applications such as flexible manufacturing,
simulation and training, command and control, CAD/CAM and
project management. An existing uniprocessor version of AcWa
supporting actors is currently being migrated to a
multiprocessor and converted from a class based system to an
exemplar based system.

2 Classes Versus Exemplars

Intuitively, a class is a data type positioned within an
inheritance hierarchy. The hierarchy describes both the
relationship between the class and other classes (the inheritance
of class variables and class methods) and the relationhip
between its instances and other instances (the inheritance of
instance variables and instance methods). It can be described
by

1. an object denoting the superclass,
2. a set of class variables and pool variables (public to

instances and classes),
3. a set of class instance variables (private class

representation),
4. a set of class methods (class operations),
5. a set of instance variables (instance representation),
6. a set of instance methods (instance operations).

Class and pool variables are extra to the class notion.
Making variables public is a function of the compiler symbol

322 OOPSLA ~S Proceedings 5e l~mt~ lg86

table lookup routine, not the basic class mechanism. Classes
simultaneously describe two hierarchies:

I. A class h ie rarchy that relates the different
classes. Each class inherits all class variables and
class methods of the classes higher up in the
hierarchy; i.e., from the superclass, its superclass,

2. An instance hierarchy that relates the different
instances of the classes in the class hierarchy.
Each instance inherits all instance variables and
instance methods of the instances associated with
the classes higher up in the hierarchy.

The two hierarchies are clearly intertwined in a one-to-one
correspondence. As we will see, it is the strong coupling
between these two hierarchies that diminishes the fiexibihty of
the system.

Intuitively, an exemplar (or prototype) [Borning 81] is
an example instance (also a sample or prototypical instance)
which can serve as a role model for other instances. It is
completely described by

1. an object denoting its superexcmplar,
2. an object denoting its class,
3. a set of variables (the representation),
4. a set of methods (the operations).

Inheritance (both for variables and methods) proceeds
along the superexemplar chain, not along the class hierarchy.
The class is maintained to provide access to classification
information, class variables and other exemplars. To define a
new data type in a hierarchy, we must create two exemplars: a
class exemplar and an instance exemplar. Typically, the
class exemplar will inherit from another class exemplar and the
instance exemplar from an instance exemplar. Thus, the two
hierarchies are distinct.

In the exemplar model, a class can have any number of
exemplars associated with it, each with a different
representation but typically with the same methods (although
implemented differently to reflect the different representation).
One of these is nominated the s tandard exemplar. Instances
are obtained by cloning exemplars (typically, only instance
exemplars are cloned). Classes in the exemplar model can also
provide new instances: however, this is achieved by having the
class clone its standard exemplar. Conventional Smalltalk
classes can be viewed as classes with exactly one examplar.
The notion of multiple representations can be accommodated
with different exemplars instead of with different subclasses. A
case for multiple representations might be a bit map which can
either be in a standard representation, a compact representation
(run-length encoded), or a disk resident representation.

For a simple but more detailed example, consider the
definition of a class Boolean with two instances t rue and
false. Figures 1 presents a class based design while Figure 2
presents an exemplar based approach. For efficiency reasons,
each instance is given a different implementation of the
methods. For illustration, the and: method for each instance is
shown below:

"for true for false"
and: anotherBoolean and: anotherBoolean

"anotherBoolean ^false

In a class based system, the only way to implement and:
for t rue differently from and: for false is to have them be
members of distinct classes. Consequently, class True is
defined specifically for its one instance true (similarly for class

O b j e c t

B o o l e a n

True False

r " - ' - -]

m

denotes I n s t a n c e relat lonshl l~S
denotes I n h e r i t a n c e r e l a t i o n s h i p s
d e n o t e s classes
d e n o t e s ins tances

A Clas s Based Des ign
F i g u r e I

I ' - - 1
i

d e n o t e s i n s t a n c e r e l a t i o n s h i p s
d e n o t e s i n h e r i t a n c e r e l a t i o n s h i p s
d e n o t e s c l a s se s
d e n o t e s i n s t a n c e s

A n E x e m p l a r Based D e s i g n

F i g u r e 2

False and instance false). Although not particularly useful, it
would be possible to permit multiple instances of t rue and
false.

In the exemplar based system, a class exemplar for
Boolean is created along with two instance exemplars: one for
t rue and one for false. Class Boolean inherits from class
Object whereas the instances t rue and false inherit from
ObjectExemplar (a typical object).

3 Why The Class Based Model Is Inadequate?

Because the exemplar based model permits the class
hierarchy to be decoupled from the instance hierarchy, it is
clearly less restrictive. This in itself is not sufficient to indict
the class based models because this additional flexibility may
not be needed. Lacking such flexibility, however, has some
obvious implications (in increasing order of importance).

1. All instances of a specific class must have identical
representations and methods. Thus, instances
cannot have specialized methods and multiple
representations for instances are not possible,

September 1986 00PSLA ~6 Proceedings 323

2. Specializations of classes with individualized
representations are not allowed. Subclasses must
have a representation that includes the superclass
representation.

3. Since the class hierarchy and instance hierarchy
are intertwined by design, either the class
hierarchy must be made to conform to the instance
hierarchy or the instance hierarchy made to
conform with the class hierarchy. Either can
involve unacceptable tradeoffs.

The multiple representations problem (case 1) can be
resolved by introducing distinct classes for each representation.
The simple solution (where possible) is to make each new class
a subclass of the original as was done in the Boolean example.
Because of case 2, this is not always possible. To avoid
inheriting the representation of the original class, it may be
necessary to make the new class a subclass of Object (or some
other logically unrelated class). If we do, this is an example of
case 3 where the logical hierarchy was made to conform with
the instance hierarchy. Because of the importance of this last
case, we will discuss it in more detail with illustrated examples.

As users of an object-oriented system, it is important to
understand the relationships between the classes and the
operations relevant to the instances without having to resort to
studying the implementation. When a class is described as a
specialization of another class, we expect the specialization
to have certain properties.

1. It typically has more operations for its instances;
e.g., specializing Object to Integer introduces
operations + and -. In unusual cases, operations
may be removed but this is not typical.

2. It may have a special-purpose representation for
more efficient storage and/or access.

3. It should be possible to treat the instances of the
specialization as an instance of the more general
type.

Implementers of new classes must assume a dual
responsibility. Since they are designing classes for the user
community, they must attempt to have them satisfy the above
properties. However, as designers, they must also attemp.t to
realize the intended behaviour as efficiently as possible.
Generally, this means sharing as much as possible from
existing classes, using the most efficient representations and
algorithmns, and perhaps even resorting to a trick or two to
achieve the goal. The implementers' concerns are quite
different from the users' concerns. Problems arise as soon as
the two concerns begin to conflict.

For illustration, consider a subset of the Collection classes
available in the Smalltalk system. Figure 3 illustrates a user's
view of these classes whereas Figure 4 presents an
implementer's view. Before we begin to analyse the classes,
we would like to emphasize that the resulting organization is a
consequence of the class base, not a consequence of poor
design choices.

First, consider classes Set and Bag. Logically, Set is a
specialization of Bag (a bag is a set that allows duplicates).
Both should have the same set-like operations such as union,
intersection, difference. However, they must have slightly
different semantics for the insert operation. Bags, for example,
insert all submissions. Sets, on the other hand, permit the
insertion only if no duplicate exists; i.e., inserting a duplicate
has no effect. A straightforward implementation for Set would

Keyed / * ~ Unkeyed

(Arl~trsr,/ Iteys) [Bag [fl~ellmtm O1~)

OrderedCollection] (lutne x~m) (No ~ekatm)

(No st:put:) Og~mslom NOT Autmuflc)

A Subset of the Classes: A Logical View

Figure 3

A Subset of the Classes: A Physical View

Figure 4

simply inherit the representation for Bag; e,g., if Bag
maintained counts for the number of duplicates, this count
could be restricted to 1 for Sets. A better representation,
however, would likely remove the counts altogether -- a notion
not possible with the class model unless the logical hierarchy is
changed. The Smalltalk solution was to make both Set and Bag
subclasses of Collection.

The reason for the conflict is that two hierarchies are
involved: a class hierarchy that describes a Set as a special case
of a Bag and an instance hierarchy that implements a set
instance as a special case of a collection instance. If the instance
hierarchy is forced to match the class hierarchy, we end up
with an understandable relationship but an inefficient
implementation. Conversely, if the class hierarchy is forced to
match the instance hierarchy, we end up with a relationship that
is logically wrong but nevertheless space efficient.

324 OOPSLA '86 Proceedings S(~ptombe¢ 1986

The above is not an isolated example. When the logical
hierarchy (the class hierarchy) and the physical implementation
hierarchy (the instance hierarchy) are forced to be the same, the
physical hierarchy usually wins out. For another example,
Dictionaries in Smalltalk are an obvious generalization of
Arrays iv which the indices are arbitrary objects. Logically,
Array should be a subclass of Dictionary. Currently, however,
Dictionary is a subclass of Set simply because it happens to be
using the Set representation. This time the class hierarchy was
forced to match the instance hierarchy because it was
convenient to inherit a specific existing representation. Since
Smalltalk is class based, a future change in the rel~resentation
could entail a change in the relationship between classes.

The data type community has long advocated a separation
between what a data type does (its operations and their
semantics) and its implementation (its representation and
coding). A similar notion is needed for object-oriented
systems. Classes should be organized in a manner that reflects
the logical relationships of the members. This relationship
should not change every time an implementation is modified.

4 Why Exemplars Are Desirable?

It should be clear that exemplars can easily be used to solve
each of the above problems. The logical relationships are
maintained via class exemplars and the implementation
strategies are realized via instance exemplars.

For example, class Set can be made to inherit from class
Bag to establish the logical relationship between the two. On
the other hand, the set's instance exemplar can be made to
inherit from the collection's instance exemplar to maintain the
existing implementation. The same approach could be used for
Arrays and Dictionaries.

The exemplar base is superior primarily because it permits
a separation between users and implementers. In the short
term, such separation may not matter but in the long term, it
will be crucial. As the applications and additions begin to
accumulate in public libraries, users will have neither the time,
the patience, or the ability to determine how to use a new
family of data types by navigating the implementation. More
likely, useful help systems will be designed that help document
the essential features and operations of important classes.
When the time comes, users will find it much easier to
understand and remember relationships that are logical rather
than physical; i.e., side effects of specific implementation
design decisions.

Unlike the class base, the exemplar base provides a more
malleable environment for changes. Changes to the
representation of instance exemplars can be accommodated
without impacting the class hierarchy. Conversely, the class
structure can be modified without impacting the instances.
Evolutionary changes are handled much better by the more
flexible exemplar base.

$ Exemplars Support Multiple Representations

To illustrate the multiple representation issue, consider the
definition of Lisp-style lists with two distinct representations:
one for empty lists and another for non-empty lists (see
Figure 5).

The List class could be defined by cloning an existing class
exemplar. The empty list exemplar is defined with an empty
representation (no instance variables) and all the usual methods
such as f i r s t and res t (both reporting error), e m p t y ?

! I

d e n o t e s i n s t a n c e r e l a t i o n s h i p s
d e n o t e s i n h e r i t a n c e r e l a t i o n s h i p s
d e n o t e s c l a s s e s
d e n o t e s i n s t a n c e s

Lists Wi th Multiple Representations
Figure $

(returning true), etc. Similarly, the non-empty list exemplar is
defined with a two component representation (a fwst part and a
rest part) along with the same methods as above. In this case,
however, first would return the first part, rest the rest part,
empty? would return false, etc. Both instance exemplars
would be initialized with the List class as their denoted class.
They would also be added to the List class as a member of the
set of instance exemplars with the empty list exemplar
designated the standard exemplar. Additional methods might
also be a dcl_ed to the List class to make it more complete; e.l~.,
method e m p t y which returns a clone of the empty hst
exemplar.

There are advantages to using several exemplars instead
of the traditional one. First, their use can play a significant role
in speed optimizations; e.g., in the list example above,
instances no longer need to perform run-time conditional
checks to distinguish between empty lists and non-empty lists.
Second, they provide a realization of multiple representations;
e.g., by permitting packed and unpacked representations
without adding to the already large class name space, by
permitting separate memory-based and disk-based
representations -- options that could play an important role as
object-oriented databases are developed. The ability to provide
multiple representations is of particular importance in industrial
applications such as CAD/CAM or flexible manufacturing.

An argument that is often presented is that the above
example can just as easily be conswacted with the class base by
designing NonEmptyList and EmptyList as specializations of
List, This approach is fine as far as it goes but difficulties
appear as soon as further specializations are designed. For
example, suppose we wish to introduce a new class,
AnnotatedList say, as a specialization of List (it has additional
special purpose instance variables) with its two corresponding
ins tance exempla r s : E m p t y A n n o t a t e d L i s t and
NonEmptyAnnotatedList.

We expect NonEmptyAnnotatedList to be below
NonEmptyList (also EmptyAnnotatedList below EmptyList) in
order to inherit the many methods provided. However, there is
no convenient location in the hierarchy for class AnnotatadList.

September 1986 OOPSLA '86 Proceedings 325

(a) , , ~
[A..o. - , .U. , I

t

t
,,,, i , | i [

exemplar descriptor

I1[instance I I BE instance 2 I S

(a) Distinct Objects

(b) t ~ ~ ~ ~ ' ~ ~
~ I ^-.o~,~,L", I , Noes~trua I

S i m u l a t i n g E x e m p l a r s W i t h Classes

F i g u r e 6

Several designs are possible (see Figure 6). Each has its
own deficiencies. Placing AnnotatedList between List and its
two specializations (Figure 6a) causes standard lists to be
erroneously viewed as annotated lists. Placing it below List and
beside its two specializations (Figure 6b) has the implication
that EmptyAnnotatedIAst, for example, is not an AnnotatcdList.
The only remaining solution is to place AnnotatedIAst below
List (Figure 6c) with EmptyAnnotatedList and
NonEmptyAnnotatedList below AnnotatedList. However, this
is unacceptable because virtually all standard list methods must
be duplicated. The only acceptable solutions either use case (b)
with method i sKindOf : for EmptyAnnotatedList and
NonEmptyAnnotatedList modified to return t rue if its
parameter is AnnotatedList (a compromise that makes the
incorrect physical hierarchy appear logicall~ correct) or use
multiple inheritance (case (b) modified so that
EmptyAnnotatedList and NonEmptyAnnotatedList additionally
inherit from AnnotatedList).

To summarize, exemplars can be simulated with the class
based systems to provide more efficient response but multiple
levels of exemplars becomes increasingly problematical. The
issue does not arise in exemplar based systems sinces classes
and instances form separate hierarchies.

6 Representation Of Exemplars

Two related but fundamentally different techniques for
representing exemplars are possible (see Figure 7): one
partitions exemplars into two physically distinct components
each capable of being manipulated as objects; the other
encapsulates the two components into one using a sharing
mechanism.

(b) Objects With Shared Components

denotes an object pointer

Representation of Exemplars
Figure 7

In the first approach, rather than maintain all relevant
information about exemplars in a class, an exempla r
d e s c r i p t o r is used to fulfill the equivalent role. The
representation of objects is left unchanged to minimize
modifications to the existing system but the class object pointer
is replaced by a pointer to the exemplar descriptor. The class
associated with an exemplar and the superexemplar is
maintained in the descriptor along with the owner of the
descriptor. An instance is an exemplar if and only if it is the
owner of its respective exemplar descriptor. Cloning an
instance involves copying the instance but not the exemplar
descriptor. Creating a new exemplar involves creating both a
new instance and a new exemplar descriptor.

In the second approach, exemplar descriptors are not
permitted to be individual objects. Instead, exemplars are
objects with a distributed representation. All instances cloned
from the same exemplar are viewed as containing and sharing
the same exemplar descriptor information; i.e., those fields that
used to be part of the exemplar descriptor in the fhst approach
are now part of each instance but each field exists only once for
the exemplar and its clones. In more general exemplar based
systems such as described in [Lieberman 86], one could
envisage providing support for user definable distributed
objects with shared components. Although attractive in its own
right, such increased generality is not required to support the
basic notions of exemplars.

With some effort, the former technique can be viewed
primarily as a change in terminology; i.e., the class is referred
to as a descriptor for an instance and the meta-class as a
descriptor for the class. Additional new objects are required to
supplant the class objects that became descriptors. However,
the approach is unsatmfying because the information logically
associated with the exemplar is in a distinct object.

The second technique removes this objection and
associates the information directly with the exemplar (and in
fact, any instance cloned from that exem]>.lar). It does require
the introduction of object subparts visible by the garbage
collector but inaccessible as distinct Smailtalk objects. A
change in the compiler is also requir~ to make the additional
fields visible and accessible and to generate new bytecodes that
load and store indirect. This latter technique is being used in
Actra.

326 OOPSLA '86 Proceedings September 1986

7 M a k i n g Smal l ta lk E x e m p l a r Based

The inheritance mechanism required to support an
exemplar based Smalltalk is equivalent to the class based
inheritance mechanism except that inheritance takes place
through exemplars rather than classes. As shown in Figure 8,
for example, exemplar E2 with additional instance variables B 1
and B2 (its local representation) inherits instance variables A1,
A2, and A3 from exemplar El.

II
IIF,.,dA, i o ..t011 F i e l d A 2 O f f s e t 1

F i e l d A 3 O f f s e t 2

E x e m p l a r E 1 w i t h M e t h o d s
M I a n d M 2

F i e l d A I (i n h e r i t e d)
F i e l d A 2 (I n h e r i t e d)
F i e l d A 3 (i n h e r i t e d)
F i e l d B I (l o c a l)
F i e l d B 2 (l o c a l)

Offset 0
Offset |
Offset 2
Offset 3
Offset 4 '1 E x e m p l a r E 2 w i t h M e t h o d s

M 3 a n d M 4

S i m p l e E x e m p l a r I n h e r i t a n c e

F i g u r e 8

To convert to an exemplar based system, changes to all
three components of the existing class based system are
required: the image, the virtual machine, and the Smalltalk
library.

Image Changes: Remove all class instance variables in
order to ensure that all classes have a uniform representation.
Change each class to an exemplar descriptor and create an
instance exemplar for each descriptor (there ts no need to create
a new one if one already exists). Additional new objects are
required to supplant the class objects that became descriptors.
Similarly, change each recta-class to a descriptor for each class.
Each descriptor requires additional fields to reference the owner
(the exemplar) and the class to be associated with the exemplar.
As explained above, the descriptor is not directly accessible as
a separate Smalltalk object. Dictionary Smalltalk should be
expanded to include both named instances and classes; e.g.,
both Object and anObject, Set and aSet, ... should be available.

Virtual Machine Changes: Implement the special
bytecodes (load and store indirect) that provide access to the
descriptor information. Direct kernel references to class objects
must be modified to accommodate the shift to exemplars; e.g.,
the new primitives should be modified to perform c l o n e
operations.

Smalltalk L ibra ry Changes: The compiler must be
modified to provide direct access to the descriptor information
from arbitrary objects. Methods previously inherited by classes
can then be rccompiled as methods associated with anObject.
Similarly, methods previously inherited by metaclasses should
be recompiled with Object. Careful changes must done on these
methods to separate the strong coupling that exists between
classes and recta-classes. Clone methods must be added to
anObject to enable duplicate objects to be created; the n e w

methods in the class must be modified to clone its standard
instance exemplar. The browser can be modified in a simple
way by having the switch that distinguishes between instances
and classes present instance exemplars (anObject, aSet, ...) as
disctint from class exemplars (Object, Set, ...). Selective
textual name changes will also be required from 'class' to
'exemplar'; e.g., method names s u p e r e x e m p l a r and
subexemplars instead of superclass and subclasses, etc.

Perhaps the greatest difficulty is coordinating the above
changes into a manageable order. Because it is a bootstrapping
process, a staged approach is required.

8 And-Inher i tance : (Tradi t ional Mul t ip le - Inher i tance)

Multiple-inheritance is a technique for the management of
objects constructed by combining two or more different kinds
objects (the super-objects) . For future comparison with a
technique to be discussed later, we will call this
and- inher i t ance . The composite object has the instance
variables of all existing super-objects in addition to extra
instance variables introduced locally (the l o c a l
r e p r e s e n t a t i o n) . In the existin~ scheme for multiple
inheritance in SmaLltalk, conflicts arise when distinct instance
variables or methods in different supers have the same name.
An instance variable conflict requires a name change to resolve
it. A method conflict is resolved by creating a local method that
overrides the conflicting methods. Typically, a specific method
(or combination of methods) is copied by the user to construct
the new local method.

The usefulness of multiple-inheritance is supported by
several existing systems. For example, Traits [Curry 84],
Loops [Bobrow 84], and Flavors (Weinreb 80] use it
extensively. Although Smalltalk supports it [Borning 82], it is
a relatively recent introduction; e.g., no existing classes are
currently defined using multiple-inheritance, it could have been
used, for example, to define ReadWriteStream by inheriting
from both ReadStream and WriteStream. Unfortunately, the
current implementation is relatively unwieldy since methods
inherited from classes other than the primary super must be
physically re-compiled in the new environment (actually
defeating one of the primary reasons for inheritance -- code
sharing).

In Smalltalk, the layout of the instance variables is
managed using a contiguous representation; i.e., fields for
the accessible instance variables are stored in neighbouring
storage location. By contrast, other systems such as Traits
[Curry84] use a d i s t r i b u t e d or non-contiguous
representation. More flexible systems [Lieberman 86] are
likely to use both appmacbes.

A contiguous representation that concatenates the
respective instance variables can be made to work without
copying or recompiling methods by

1. insisting that local methods have access only to the
local representation,

2. associating a unique base with each method
accessible from the new exemplar, and

3. providing a repository for this base in active
contexts.

The first requirement actually eliminates instance variable
conflicts because instance variables of inherited exemplars
cannot be directly manipulated, even though they exist in the
object. Additionally, this property ensures that exemplars are

September 1986 OOPSLA '86 Proceedings 327

provided with a greater degree of modularity than existing
Smalltalk objects. This deviance from the Smalltalk semantics
is expected to have little impact -- it can always be
circumvented by defining explicit accessing methods.

t) riFi-,,
Field A2 I Ofl~t i I l l Fi'ld sz I o: IO . I /

Etemplnr E1 with MeUlodl l l gnmP I l r I~1 wit
MI lad M2 J k M3 Iml |

.J ~)
I

Field AI (inherited) Off l l l S
Field A2 (Inherited) oflr i l l i
Field A3 (inherited) OI l~ l 1
Filld I I (Inherlled) o r i e l]
Field |2 (inherited) Offa l 4
Field C! (Iocnl) ~ $

Exemplar E3 with Metheda
MS and MS

o., I1 OffluN i

/
! , f

Multiple Inheritance
(And-Inheritance)

Figure 9

The second and third requirements provide the mechanism
for "position independent" refenmces to instance variables. The
base is the offset for that portion of the representation
accessible by the method; i.e., the local representation. In
Figure 9, exemplar E3 inherits from both exemplars El and
E2. The figure illuswates that with respect to exemplar E3 and
any of its clones, MI accesses its instance variables using base
0, M3 using base 3, and M5 using base 5 (to choose a few
typical cases). Although not explicitly shown, E2 and its clones
would be using a different set of bases; e.g., M3 would be
using base 0.

Because the bases are not unique to the methods, a small
tree structurally isomorphic to the inheritance structure (a
dictionary tree) must be maintained with each exemplar to
record the distinct bases. Intuitively, each node of this tree
corresponds to one exemplar in the inheritance hierarchy and
contains both a base and the method dictionary associated with
that exemplar. For the simple inheritance case, the Irec for a
particul~ exemplar can share the super czemplar's tree. In
generm, me amount of storage needed to store this information
is negligible if a suitable shamble structure is used.

When method lookup is performed, the base associated
with a given method is extracte, d and stored into the
corresponding active method context to enable correct n ~ to
the local representation. Instance variables of the exemplar are
then accessed by adding the instance variable offset to the base
of the method. The method lookup for super messages begins
with a search in the exemplar containing the method (each
method can specify the unique exemplar with which it is
associated) and simply adds the new base found to the current
base to obtain an updated base.

The cont iguous representation does not successfully
handle cases involving exemplars with varying numbers of
fields. Such representations are used for representing arrays
and collections, for example. Consider the situation of simple
exemplar inheritance as shown in Figure 8 but where both the
inherited exemplar E1 and the new exemplar E2 have a varying

number of fields; e.g., one collection-like object is trying to
inherit from another. This contiguous representation is too
simplistic to accomodate more than one varying length field in a
new exemplar (at the end). Of course, it could be generalized
but the result would require substantial modifications to the
Smalltalk virtual machine code for field accessing.

A distr ibuted representation can be used to circumvent
this problem. In Figure 8, rather than expanding the fields of
the inherited exemplar El into the new exemplar E2, an expficit
instance of El can be created and a pointer to that instance kept
in E2 (instead of the actual instance variables). E2 is then
viewed as a composite object with subpart El. As the method
lookup mechanism climbs the inheritance hierarchy, the
corresponding subpart structure is tracked. When the desired
method is found, it is executed on the corresponding subpart.

The approach is made compatible with the above technique
that maintains bases by using constant zero for the base.
References to self must be resolved by locating the outermost
containing exemplar. This can be done by keeping
outermost-self in addition to the current base in the active
context. Messages sent to arbilrary objects must create a new
outermost-self (the receiver); messages to self maintain the
existing one. If the push receiver bytecode is revised to push
outermost-self, all message sends can be handled uniformly
(the first case). Instance variable access, on the other hand,
must use the local self.

In our initial implementation, we are using only the
contiguous representation. Since the previously mentioned
problem situatwns are not currently handled by the existing
Smalltalk implementations (by design), this approach will
maintain the existing functionality while minimizing the impact
to the existing implementation

Obvious changes are needed in the method lookup
mechanism to handle sharable trees of methods/bases (and the
corresponding arithmetic to propagate bases) and in the meth.od
send primitives to encode the base and the current exemplar
into the active context. Instance variable access must also be
relative to the base associated with the active context. Super
messages must also be modified to accommodate the above.
Note that this implementation strategy can be applied to both
class based and exemplar based Smalltalk systems.

8. Or-Inheritance: A New Dimension

The additional ability to associate several distinct instance
exemplars with a class (the multiple representation capability)
introduces the potential and perhaps even the need for a new
mode of sharing.

To introduce the new mode, recall the example of
Lisp-style lists with two representations realized by an emp.ty
list exemplar and a non-empty, list exe.mp!ar.Desi..gmnlg a single
new exemplar that is intenctexl to inncrit from list instances
(without being specific) must inherit either from the empty list
exemplar or the non-empty list exemplar but not both. The
notion is illustrated by Figure I0. Contrast this approach with
that suggested by Figure 6 where t w o corresponding
annotated list exemplars (an empty one and a non-empty on..e)
are provided, each inheriting from the corresponding hst
exemplar.

328 OOPSLA '86 Proceedings September 1986

E m p t y L l s t E x e m p l e r

e m p t y r e p r e s e n t a t J o r

first
rest

empty?
, , ,

F l r s t P a r t
R e s t P a r t

f i r s t
rest

empty?
o o .

A n o t h e r P a r t

a M e t h o d
a n o t h e r M e t h o d

. . ,

io e, ie'dB' 1 F,.,,A2 o e,:
Field A3 Offset 2

Exemplar El with Methods Exemplar E2 with Methods
MI and M2 M2 and M3

Field AI or BI (inherited)
Field A2 or B2 (inherited)
Field A3 (inherited)
Field C! (local)
Field C2 (local)
Object Pointer to El or E2

Offset 0
Offset I
Offset 2
Offset 3
Offset 4
Offset 5

Exemplar E3 with Methods
MI, M4, and MS

I l l u s t r a t i n g O r - I n h e r i t a n c e

F i g u r e 10

This kind of inheritance (o r - i n h e r i t a n c e) is quite
different from the traditional kind of multiple inheritance
(and-inheri tance) . Or-inheritance expects the alternative
exemplars to have the same methods (distinctions are also
permitted) but and-inheritance views such common methods as
conflicts that must be resolved.

The fundamental concern in providing an implementation
mechanism is the code sharing issue; e.g., multiple
instantiations of compiled annotated list methods should be
avoided.

The simplest approach is to use a distributed solution. In
our example, an annotated list is simply the local representation
plus a pointer to one of the two list instances. Cloning an
annotated list requires a clone not only of itself but also of the
list that is now a subpart. In general, all subparts must be
cloned. Without or-inheritance, super-objects in the exemplar
are unique; with or-inheritance, selected super-objects are
indeterminate (in the descriptor portion) but resolved in the
instance itself (the subpart pointer). Method lookup is
consequently more complicated. As with and-inheritance,
ou te rmos t . s e l f must be maintained if the object and its
subparts is to be viewed logically as one object. This approach
is similar to delegation [Lieberman 86] although delegation
does not attempt to maintain the "one object viewpoint".

In the absence of and-inheritance, a contiguous
representation supporting or-inheritance (see Figure 11) could
be made to work by (1) overlaying the instance variables of
the inherited alternatives and (2) maintaining an object pointer
to the subpart examplar chosen for this specific object. The
object pointer in this case is used only for method lookup
purposes. Since the instance variables of the subpans are local
(the representation being contiguous), there is no need for
distinguishing self from outermost-self. The approach is clearly
inefficient if the different inherited exemplars have widely
differing sizes.

Inheritance with Multiple Representations
(Or-lnheritance)

Figure 11

In the presence of and-inheritance, bases are also needed.
The combination of both and-inheritance and or-inheritance as
illustrated in Figure 12 poses no additional difficulty.

Field B2 Offset

~emplar El with Methods
MI and M2

Ezemplor E2 with Metkods
M~ M3 lind M4

Exemplar F.3 with Methods
MS and MS

• m m . o ~ \ . ,
to. Mr, MS. m . M,. +J

Field At or BI (inherited)
Field A2 or B2 (imhorJted)
FieJd A3 (jnbei4ted)
FieJd CI (inherited)
Field C2 (inherited)
Field DI (local)
Object Polu~r to El or E2

for MS and M6

Offset 0
OfTset i
O(fut 2
Offset3
Offset 4
Offsets
Offset 6

F.xempiar FA wits Metbed
M7

[Ihum = S

Combined And.Inheritance and Or.Inheritance

Figure 12

September 1966 OOPSLA '86 Proceedings 329

9 Conclusions

We have discussed the differences between class based
systems and exemplar based systems and shown that the latter
have significant advantages. In particular, the exemplar based
systems permit the class hierarchy to be divorced from the
instance hierarchy. This enables the user's viewpoint to be
separated from the implementer's view providing additional
fine control of design and implementation considerations, it
also permits multiple representations by enabling distinct and
arbitrarily different instance exemplars to be associated with the
same class.

By converting a class based Smalltalk into an exemplar
based system, the original class hierarchy is factored into two
distinct hierarchies: the instance hierarchy, since it is the
implementation hierarchy, can be maintained as it exists; the
new class hierarchy, the logical hierarchy, can be reorganized
after the fact to display the more intuitive and expected logical
relationship. The new capability permits Set, for example, to be
a specialization of Bag and Dictionary to be a generalization of
Array while still maintaining the existing representation and
methods which are inherited via the instance hierarchy.

We developed the notion of or-inheritance as distinct from
and-inheritance and discussed associated implementation issues
from the point of view of both contiguous and distributed
representations. The Actza project is currently implementing an
exemplar based Smalltaik that focuses on contiguous
representations.

Exemplars permits evolution in directions that were not
previously possible. It also provides clues as to how existing
systems like the Lisp Flavour system might be extended to
provide sharing both at the source and code level.

References

1. Bobrow, D.G., and Stefik, M.J., The LOOPS Manual
(Preliminary Version), Knowledge-based VLSI Design
Group Technical Report, KB-VLSI-81-13, Stanford
University, August 1984.

2. Borning, A., The Programming Language Aspects of
Thinglab, A Constraint.Oriented Simulation Laboratory,
ACM Toplas, Vol. 3, No. 4, Oct. 1981, pp. 353-387.

3. Borning, A., Ingalls, D.H., Multiple Inheritance in
Smalltalk-80, Proceedings of the AAAI Conference,
Pittsburgh, PA., 1982.

4. Cox, B., Message~Object Programming: An
Evolutionary Change in Programming Technology,
IEEE Software, Vol. 1, No. I, pp. 50-61, Jan 84.

5. Curry, B., Baer, L., Lipkie, D., and Lee, B., Traits: An
Approach to Multiple-Inheritance Inheritance
Subclassing, Proceedings ACM SIGOA Conference on
Office Information Systems, published as ACM SIGOA
Newsletter Vol. 3, Nm. 1 and 2, 1982.

6. Duff. C., Neon - Extending Forth in New Directions,
Proc. of 1984 Asilomar FORMI., Con£, 1984.

7. Goldberg, A. and Robson, D., Smalhalk-80: The
Language and Its Implementation, Addison Wesley,
Reading, Mass., 1983.

8. Laff, M.R., Smallworld . An Object-Baaed
Programming System, IBM Research Report RC-9022,
IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, 1981.

9. LaLonde, W.R.,Why Examplars are Better Than
Classes, Technical Report SCS-TR-93, School of
Computer Science, Carleton University, May 1986.

I0. Lieberman, H., A Preview of ACT 1, MIT AI
Laboratory Memo No. 625, June 1981.

11. Lieberman, H., Using Protorypical Objects to Implement
Shared Behavior in Object Oriented Systems, First
Annual Object Oriented Programming Systems,
Languages, and Applications Conference, Portland,
Oregon, September 1986.

12. O'Brien, P., Trellis: Object-Based Environment,
Language Tutorial, Eastern Research Lab., Digital
Research Lab Tech. Rep. DEC-TR-373, Nov. 1985.

13. Shapiro, E.Y. and Takeuchi, A., Object-Oriented
ogramming in Concurrent Proiog, New Generation
reputing, OHMSHA Lid and Springer-Verla8, Vol. 1,

1983, pp. 25-48.
14. Tesler, L., Object-Pascal Report, Apple Computer, Feb.

1984.
15. Thomas, D.A., and Lalonde, W.R., Actra: The Design

of an Industrial Fifth Generation SmaUtalk System,
Proc. of IEEE COMPINT '85, Montreal, Canada, Sept.
1985, pp. 138-140.

16. Vaucher, J.G. and Lapalme, G., POOPS: Object
Oriented Programming in Prolog, T c~hnicai Report 565,
Laboratoire INCOGNITO, Dept. d lnformatique et de
Recherche Operationnelle, University of Montreal,
March 1986.

17. Weinreb, D., Moon, D., Flavours - Message-passing in
the lisp Machine, M1T AI Memo No. 602, Nov. 1980.

330 OOPSLA '86 Proceedings September 1986

