
Model Driven Development – The Case for Domain
Oriented Programming

Dave Thomas and Brian M. Barry
Bedarra Research Labs
1 Stafford Rd Suite 412

Ottawa, Ontario, Canada K2H 1B9
1-613-860-1163

dave@bedarra.com, brian@bedarra.com

ABSTRACT
In this paper, we offer an alternative vision for domain driven
development (3D). Our approach is model driven and emphasizes
the use of generic and specific domain oriented programming
(DOP) languages. DOP uses strong specific languages, which
directly incorporate domain abstractions, to allow knowledgeable
end users to succinctly express their needs in the form of an
application computation.

Most domain driven development (3D) approaches and
techniques are targeted at professional software engineers and
computer scientists. We argue that DOP offers a promising
alternative. Specifically we are focused on empowering
application developers who have extensive domain knowledge as
well as sound foundations in their professions, but may not be
formally trained in computer science.

We provide a brief survey of DOP experiences, which show that
many of the best practices such as patterns, refactoring, and pair
programming are naturally and ideally practiced in a Model
Driven Development (MDD) setting. We compare and contrast
our DOP with other popular approaches, most of which are deeply
rooted in the OO community.

Finally we highlight challenges and opportunities in the design
and implementation of such languages.

Categories & Subject Descriptors: Add here

General Terms: Management, Languages, Documentation,
Design, Human Factors.

Keywords: Domain Driven Development, Model Driven
Development, Domain Specific Languages, End User
Programming, Programming By Professional End Users.

1. INTRODUCTION
1.1 Domain Oriented Programming
In this paper, we offer an alternative vision for domain driven
development (3D). Our application model based approach
emphasizes the use of generic and specific domain oriented

programming (DOP) languages. DOP employs strong specific
languages, which allow knowledgeable end users to succinctly
express their needs in the form of an application computation.

Most 3D approaches and techniques are targeted at professional
software engineers and computer scientists. We argue that DOP
is a promising alternative to such 3D approaches. Specifically we
are focused on empowering application developers who have
extensive domain knowledge as well as sound foundations in their
professions, but who may not be trained in computer science.

We note that high-level programming languages have long been
found useful in specific domains, and that domain specific
languages are also not new. We therefore make no claims that
DOP is a new idea; rather it is a good old idea that should be
rediscovered.
DOP languages typically provide one or more strong
computational metaphors that allow domain concepts to be readily
modeled. DOP languages have simple syntax and clean semantics
although the underlying semantic account may be extensive. They
often achieve their expressiveness by a strict uniformity of
operations and types. DOP languages allow the domain developer
to map domain abstractions into DOP abstractions.
Most are learned by example or through trial and error rather than
with formal training. They lend themselves to this since the
majority are interactive languages featuring direct execution.
Hence they support think and execute as opposed to design code
and test development.
Domain Specific Languages (DSL) [19] are closely related to
DOP. A DSL is a machine-processable language whose terms are
derived from a specific domain model, which is used for the
definition of components or software architectures supporting that
domain. A DSL is tailored for a particular application domain,
and captures precisely the semantics of that application domain –
no more, no less. A DSL allows one to develop software for a
particular application domain quickly and effectively, yielding
programs that are easy to understand, reason about, and maintain
[21]. DOP languages are frequently used as a base to implement
DSLs.
In the next section we provide a survey of experiences with end-
user programming, which we regard as precursors to DOP. We
follow with a brief discussion of DOP development practices, in
which we observe that many of the best practices such as patterns,
refactoring, and pair programming are alive and well in these
communities. We then compare and contrast DOP with other
popular approaches, most of which are rooted deeply in the OO

Copyright is held by the author/owner(s).
OOPSLA ’03, October 26-30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

2

community. Finally we highlight challenges and opportunities in
the design and implementation of DOP languages.

2. Experiences With End User Programming
The motivation for DOP draws heavily on our own experiences
and those of others with end-user programming. End-user
facilities typically are designed for application developers (“blue
collar programmers”) rather than formally trained software
professionals. Application developers are not, as some would
suggest, people who “can’t learn difficult computer science
concepts”. They are rather skilled individuals who have chosen to
focus their creative energies on a particular application domain,
rather than on computing per se. They typically have extensive
domain knowledge as well as sound formal foundations in their
professions. We provide a brief survey of experiences with end-
user programming, from both current and past practice, which
have motivated many of our ideas about DOP.

2.1 4GLs
The term 4GL was coined by James Martin to refer to non-
procedural high-level languages designed to simplify CRUD
(Create, Read, Update, Delete) programming and report writing.

RPG exemplifies the success of 4GLs. The IBM System/38
(which evolved into the AS/400) was essentially an RPG machine
and its uniformity and robustness allowed ISVs to quickly
develop reliable business applications. For many years AS/400
customers, even though they had far fewer development staff than
mainframe operations, achieved comparable or greater
productivity. This was despite the fact that the programmers often
had a professional education in business rather than in computer
science. Most practitioners attributed this remarkable
productivity directly to the power of RPG to model business
domain abstractions, combined with the capability to have OS
facilities easily accessible from within the same language.

4GLs have lately (rather unfairly) acquired a somewhat unsavoury
reputation compared with more recently popular approaches to
application development such as Microsoft .Net or Sun J2EE. We
argue strongly that most programmers were likely better off using
4GLs than these more “modern” technologies. Successful 4GLs
such as SQL, Focus, RPG-II, Adabas, Powerhouse, Mapper and
Synon increased programmer productivity by providing language
constructs that modeled the application domain. Further they did
so without burdening the user with the complexity of extraneous
computer science concepts.

4GLs may not always be well suited to building complex
applications, but a major advantage of 4GLs is that simple things
can be implemented simply (an advantage we would suggest is not
shared by J2EE or .Net). In practice, a surprisingly large number
of commercial applications fit one of a few basic architectural
patterns, and 4GLs often do an excellent job of capturing and
supporting these patterns. RPG, for example, leverages the sort-
merge file comparison used in sequential file processing for
CRUD and reporting applications.

While it may not be readily apparent, in fact many of today’s
eBusiness applications perform exactly the same sort of CRUD
operations across multiple data sources, with presentation to a
web browser instead of a terminal and printer. Developers have
observed these patterns in J2EE applications, and have begun to

address them with generators, which take XML descriptions.
More recently, new languages such as Xquery and Xduce [25] are
appearing, which attempt to provide language solutions.

2.2 Spreadsheets
Since their introduction in VisiCalc over twenty years ago [13],
spreadsheets have become such an accepted part of end-user
computing that most spreadsheet users are not even aware that
they are programming. Spreadsheets illustrate 3D at its most
powerful: users conceive (analyze), organize (design), and record
(code) their solutions to computational problems, all within the
domain abstraction of financial tables. The abstraction is so
natural and powerful that basic spreadsheet programming requires
little or no instruction for anyone with even rudimentary
accounting skills.

The spreadsheet is an excellent example of a strong, specific
solution. It is very good at what it does, and not particularly
useful for any problems that don’t fit the basic abstraction of
financial tables. For example, complex control constructs (like
filters or iterators) are difficult to implement in spreadsheets,
usually requiring redundant replication of data (but see vector
languages below which offer another 3D approach which handles
this problem very easily). The Analyst [17], an OO spreadsheet
designed to provide diverse computational support for intelligence
analysts, provides the most compelling example of just how far
the spreadsheet metaphor can be pushed.

2.3 Visual Languages
Visual languages (e.g. Prograph [14], LABView [18], IBM
VisualAge [24]) allow users to program directly with visual
abstractions (“graphics”) such as dataflow diagrams. Advocates
of visual programming [10] [11] claim that the use of graphics,
which provide concrete representations for program abstractions,
can dramatically simplify the programming task. Once again, if
the underlying application domain fits the graphical abstraction
(e.g. the problem really is a dataflow problem in the Prograph
case or message flow in VisualAge), users typically experience
good results [24]. LABView in particular is likely the most
successful VPL and is widely used in process engineering for both
modeling and direct execution.

2.4 Rule Programming
There are many business and engineering applications where all
or a substantial part of the application is naturally represented
using sets of rules. Rules are particularly attractive when the
application needs to evaluate a complex set of conditions such as
policies. Knowledgeable end users can directly define, modify,
test and execute rule programs. Rule languages vary from simple
decision tables that have been used for years in IT, to specific rule
languages, to expert systems such as Clips [27], to full-blown
logic and constraint programming languages such as Prolog [28].
Recently there has been renewed interest in rule programming,
reflected in both RuleML [29] and OMG Rule [30].

2.5 Mathematical Programming
Symbolic mathematical programming languages such as
MATLAB [12], Maple [15] and Mathematica [16] describe and
manipulate abstractions such as mathematical equations
symbolically rather than numerically. That is, users of these

3

systems can find exact, closed form solutions to scientific and
engineering problems, in exactly the same way that a human
would solve them (except that these systems are much better than
most human solvers!). Since solutions obtained symbolically are
exact, they are, in some sense, “better” solutions than those
obtained with numerical techniques. The scientists and engineers
who use these systems experience a very easy learning curve. Just
as important, symbolic programming systems typically include a
number of useful end-user facilities (such as tools for publishing,
graphing and charting, report-writing, etc.) that spares their users
from any need to learn conventional programming languages such
as C or Java. Matlab, for example, includes the capability to
produce executable programs from the Matlab model.

2.6 Vector Programming Languages
Vector programming, as exemplified by APL [6] and its successor
languages such as J and K, provides another example of the power
of a strong specific solution. Mathematicians, scientists,
engineers, and quantitative business users find it natural to
describe systems using vectors and matrices, and have no
difficulty transferring this knowledge to enable programming in a
well-designed vector language. Vector languages illustrate two
other interesting aspects of 3D approaches. First, the strong
underlying model (vector math in this case) allows implementers
to design both compact data representations, and very efficient
algorithms for computing on that data. Kdb applications [32], for
example, routinely process many thousands of transactions per
second on huge amounts of data, easily outperforming standard
relational databases. Second, because the programming
abstraction is such a good fit to the problem domain, programs
tend to be smaller when compared with, for example, a typical OO
language like Java. Less code translates directly to higher
productivity and lower maintenance costs.

2.7 Dynamic Object Languages
These languages include actor languages, prototype languages
such as Self and most familiarly, Smalltalk and CLOS. They are
characterized by a pure object model, where the objects rather
than the values are strongly typed. Most derive their heritage
from Simula 67, which we would assert is the first model based
programming language, and arguably defined the beginning of
model driven development. Unlike languages from the Pascal and
C family, we found that Smalltalk had a very quick uptake by
business users and engineers [9]. In particular, the simple
keyword syntax and extensive generic class libraries were the
major factors which users claim attracted them to Smalltalk.
The keyword syntax in particular provided domain programmers
with a simple way to embed their own domain abstractions in
Smalltalk, and acted effectively as a mechanism for domain
specific syntactic extensions. Successful Smalltalk developers
often had a lot of domain modeling experience, typically with a
strong bias to using a simulation metaphor for development. The
most sophisticated business developers used Smalltalk as a 5GL,
by which we mean they implemented their own DOP languages
on top of the Smalltalk base. They generally found this to be a
more productive and rewarding programming experience than
using more computer science oriented languages, which appeared
to them to have a great deal of accidental complexity.

2.8 Functional Languages
This family of languages, which includes Lisp [26], Scheme, ML
and Haskell, has a strong tradition based on functional
programming. Functional languages, like dynamic object
languages and vector languages, have for many years been used
very successfully in challenging business and engineering
problem domains [4] [7] [8].

They have also been used extensively for hosting domain specific
programming languages, so much so that there was a common
saying in the Lisp community that “no one actually programs in
Lisp; they use Lisp to implement the language they really want
and then program in that”. At one point the use of functional
languages was so significant that symbolic hardware was
developed to support execution with a tagged architecture and
assist in garbage collection. In recent years there has been
resurgence in functional programming led by the Haskell and
Caml communities.

As noted, Lisp in particular easily allows the definition of an
embedded domain language. Functional programmers must smile
when looking at the XML family of standards, which are
following this tradition of embedding for descriptive languages.
In the context of text and tag processing we should also note in
passing the important contributions of the SNOBOL family of
languages. These led in turn to the expressive and interesting
streaming rule language, Omnimark [5]. The Omnimark language
is far more readable and efficient than XSLT, which is popularly
advocated for such tag transformations.

3. DOP Development Practices
During the past five years we have been interacting with different
groups of DOP programmers using the languages discussed
above. In particular we were interested in what motivated an
actuary or financial analyst to learn a DOP language, especially
when some, such as the APL family, are considered difficult to
both learn and use by many software engineers. Further, we were
interested in understanding their development processes,
especially in comparison with the processes advocated for
software engineering and business process modeling.

3.1 Living In My Data
All of the users of advanced programming languages confessed
that they found learning the language difficult, although many
also worked in pairs with another professional programmer who
was an expert. They also freely admitted that they didn’t have full
comprehension of the entire language, nor did they have any deep
appreciation for the semantic account of the language. A
recurring theme was that their selected technology allowed them
to live in their data and that unlike what they called “CS
languages” they felt that they could not think ahead of their
language, and none expressed a need for faster execution at
development time. One actuary commented, “It was a pain to
learn but until I had this capability I’ve always been hostage to
using Excel and OLAP tools, typically depending on
programmers and IT. Now I can live in huge raw data sets and I
see things in that data that none of my colleagues can see using
their conventional tools”.

4

3.2 Domain Analysis Or Domain
Programming?
For many years the software engineering community has argued
the need for domain analysis [20] to identify the appropriate
domain artifacts and abstractions prior to initiating a development
activity, or selecting COTS components. Interestingly this is very
similar to the approach used by DOP developers, who directly
construct and exercise domain abstractions as part of their
development process. The essential difference in the DOP
approach is that the domain concepts are directly implemented
and manipulated in code, rather than being further abstracted into
UML and then rendered into an implementation via generators.

3.3 Agile Of Course
Many commented that “they really liked the Agile/XP approach”
since in many ways it matched what they were already doing.
Many teams practiced what we have come to call ultimate pair
programming, where an expert developer and a domain expert
shared a keyboard and mouse. This is the best of XP where the
customer actually becomes a co-developer.

Typical development teams were very small, with two to five
being a normal size. All development was iterative and
incremental. Usually every new function/method was exercised at
the time of creation, not deferred for later testing.

Because the languages were known to be more difficult to
understand, literate programming was the accepted practice and
naming conventions were considered very important. APL
programmers pointed to the classic paper by the late Alan Perlis
on APL idioms that can be seen as the first publication on patterns
[2].

Those unfamiliar with objects asked about refactoring and smiled
happily as they talked about how they constantly revised their
code to improve it. Functional programmers often mentioned the
paper by Hughes [3] that provided inspiration for them to polish
and refine their programs.

4. Placing DOP in the 3D Context
3D covers a wide range of emerging technologies, including but
not limited to Model-Driven Architecture, Product-Line
Engineering, Aspect-Oriented Software Development, Generative
Programming, Intentional Programming, and various attempts to
generalize Design Patterns. What these share is the common goal
of bringing solution technologies into better alignment with
problem domains. With the exception of Intentional
Programming, the majority of these techniques are related to
component and object technology. They are designed for
software engineers to build either application software, or tools to
build such software. Generative Programming and Aspect
Oriented Programming in particular have evolved as practical
forms of meta-programming, with strong roots in computational
reflection. The Patterns work has found application in
organizations outside of OO development; however, these are
really a distillation of best practices rather than executable
artifacts.

4.1 The Typical 3D Process
The majority of 3D efforts are focused on developing generic
modeling and implementation techniques, to support software

development by formally trained computer professionals. Many
require a graduate education in computer science as well as
considerable practice to master. One only has to look at the
complexity inherent in the OMG MDA stack, AOP languages, or
Generative Programming to see why they are daunting for many
software professionals, let alone engineering, and business
professionals.
These approaches can be summarized as mapping domain
concepts into abstract modeling concepts (often UML), then
applying sophisticated tools and processes to generate code. They
can work well in restricted domains but are difficult to apply in
many others such as business intelligence and bioinformatics.
Since the target platform is typically J2EE or .NET there is a
strong emphasis on generation to translate domain representations
into middleware execution artifacts. The inherent complexities of
the process are obvious and the need for tools to implement them
is acute. We can summarize the process as –

Domain => UML => Program

4.2 The DOP Process
In contrast, DOP seeks to address the problem by using a higher
level programming language that has strong computational
foundations to directly model the domain problem, or to host a
domain specific language for that purpose. Rather than employ a
separate modeling abstraction like UML, we model the problem
domain directly in an executable programming language. We
argue that for many application developers this is a much more
natural approach –f

Domain => Domain Language => Program
U.S. Supreme Court Justice Potter Stewart once famously
remarked that “I shall not today attempt further to define the
kinds of material I understand to be embraced within that
shorthand description; and perhaps I could never succeed in
intelligibly doing so. But I know it when I see it”[22]. Our ideas
about DOP are immature, and like Justice Stewart we find it
difficult at this stage to crisply define exactly what is, and is not,
DOP. But we know it when we see it, and we can draw on the
lessons learned from end-user programming, and from our
interactions with nascent DOP developers, to identify some of the
features and benefits of DOP that distinguish it from other 3D
approaches:

• language abstractions which map directly onto the
problem domain

• interactive, incremental development style

• programming by example

• bias towards dynamically typed object languages

• use of agile development practices such as pair
programming, refactoring and test first

• DOPs seem easier to learn; partial understanding is
usually enough to do useful work

• smaller programs leading to increased productivity

• domain-driven implementation efficiencies
Certainly none of these features is unique to DOP, but taken
together they begin to characterize DOP’s place within the 3D
universe.

5

5. Challenges and Opportunities in DOP
Design and Implementation
5.1 Strong Specific Versus Strong Generic
It might seem intuitive that domain specific languages should be
more attractive to users than potentially more complex generic
domain oriented languages, which typically have a much higher
learning threshold. However, in practice, users of DOPs express a
strong preference for the ability to easily embed a DSL in a DOP.
We need to understand a great deal more about the tradeoffs
between DSLs and generic DOPs, computational models for
embedding, and the impact of these on programmer productivity
and program complexity.

5.2 Space and Speed Issues
As noted earlier, we have a few examples of strong specific
domain knowledge allowing implementers to make assumptions
and impose constraints which lead to speed and space efficiencies,
e.g. with vector programming languages. Our intuition is that
there are many more opportunities with DOPs for such domain-
driven performance tuning.
In addition, most of DOP’s antecedent technologies (e.g.
functional and dynamic object languages) typically have their own
portfolios of performance optimization techniques which have
been developed over the last twenty or so years. However, many
of these are only understood by their expert communities, and not
well known to outsiders.
There may also be some unique performance opportunities
obtained by optimizing at a very high level using function
composition, substitution etc. Our conclusion is that it is likely
that there are potential synergies, both between the domain-driven
and language-driven approaches, and also between the various
language communities.

5.3 Readability and Writeability
Our experience, and the experience of others, is that once coached
over the threshold, business and engineering students feel
empowered by DOP. However, terminology can present a
significant barrier: lexical closures, continuations, higher order
functions, range, domain, monads are just a few examples of
terms which are not in the lexicon of most application developers
and many software professionals. The challenge for DOP
advocates is how to reduce these syntactic and vocabulary barriers
that often come from the domains or technical disciplines in
which the languages have evolved, which can create significant
intellectual impedance.
End user tooling which generates DOP code, combined with
teaching examples, which provide a gentle introduction to
concepts for those who lack the formal background, may mitigate
this. But at another level this problem can be seen as the dark
side of the strong affinity that exists between DOPs and their
associated foundation disciplines. Regardless, it is clear we need
better ways to communicate the deeper meaning of domain
specific terminology implicit in DOP languages to application
developers.

5.4 Generation vs. Direct Execution
Most current DOP approaches have tended to favor direct
execution over generative techniques. There is no doubt that the
immediacy of the direction execution experience, the capability to

interact with both program and data in real-time, has tremendous
appeal to the application developer.
However, it is a reality of today’s heterogeneous computing
environment that many platforms are not easily accessible,
perhaps because they are remote, or have limited interaction and
presentation facilities (e.g. embedded systems). Deployment in
such circumstances requires a capability to generate solutions
based on some kind of program description or metadata.
In addition, generative techniques can offer opportunities for both
performance improvement and reuse that are not available with
direct execution. The history of OTI’s efforts to deploy Smalltalk
on embedded computers and mainframes offers some hints as to
partial solutions [9][23], but this is a large open area, which
requires further investigation.

6. Summary
In this paper we have sketched a vision for Domain Oriented
Programming, a model driven approach to 3D. What sets DOP
apart from other 3D alternatives is that it is aimed squarely at
application developers, rather than computer professionals. It
addresses problems that require deep application knowledge and
the ability to build complex applications directly from domain
models. We do not claim to have invented DOP, as much as to
have rediscovered it in the cultures of various end-user
programming communities. In a practical sense, DOP is alive and
well, and is already being used in several niche application
domains. But the application developers who currently employ
DOP languages and techniques are not doing so with any explicit
self-awareness. They do not, as yet, have a label to describe what
they are doing, and names are important.
There is currently little or no effort devoted to studying best
practices, categorizing and cataloguing techniques, developing
new technology for embedding DSLs in DOPs, or designing new
and better DOP languages. We would like to change this, by
calling attention to a real success story that is hidden in plain
view, one that should be legitimized and encouraged. DOP
methods like ultimate pairs provide an ideal vehicle for non-
software professionals to work in concert with talented
developers.
The current communities are often isolated islands centered on
specific applications, languages, or vendor products. We feel that
there is a need for more interaction between the language
communities, as well as a need to educate young professionals
with respect to the power and limitations of various DOP
approaches [31]. At a minimum we would expect to see such
efforts improve best practices, and evolve existing languages or
new hybrid languages such as Loops (objects, rules, functions and
lists), or F-Script (Smalltalk and Arrays) [33]. Our hope is that by
promoting this vision we can help to build a community around
DOP concepts, and encourage research that furthers the state of
the art.
We would like to close with a note of caution. The attempt to
turn a good strong specific language into a universal language and
“conquer the world” has taken many languages outside the
problem space for which they are best suited. The language wars
that follow often destroy the use of the languages in the very
domains for which they worked best. DOP languages need to stay
domain-oriented, and not fall prey to this temptation. After all,

6

every true craftsman knows the importance of using the right tool
for the job.
DOP, while not a panacea, is a proven approach, which merits
further definition, investigation and popularization. It has already
enjoyed limited success and presents a clear alternative to current
3D approaches for application development.

7. ACKNOWLEDGMENTS
Our thanks to all of those talented application developers who
continue to build great applications despite the limitations
imposed on them by the implementation technology; to the
designers of semantically clean high level languages; and finally
to the reviewers for their constructive comments.

REFERENCES
[1] Philip Cox and Trevor Smedley, End-User and Domain-

Specific Programming (EUP) Symposium, 2002 IEEE
Symposia on Human Centric Computing Languages and
Environments (HCC’02).

[2] Alan J. Perlis and Spencer Rugaber, Programming with idioms
in APL, International Conference on APL Proceedings,
Pages: 232 - 235, 1979.

[3] J. Hughes, Why Functional Programming Matters, Computer
Journal, 32, 2, pp 98-107, 1989.

[4] Simon Peyton Jones, Jean-Marc Eber and Julian Seward,
Composing Contracts: An Adventure in Financial
Engineering, ICFP 2000.

[5] Mark Baker, Internet Programming with OmniMark, 2000.
[6] APL 2002, Proceedings of the 2002 International Conference

on APL: Array Processing Languages: Lore, Problems, and
Applications, July 22-25, 2002, Madrid, Spain. ACM, 2002.

[7] Philip Wadler, Functional Programming in the Real World,
http://www.research.avayalabs.com/user/wadler/realworld/.

[8] David B. Lamkins, Appendix A - Successful Lisp
Applications, Successful Lisp: How to Understand and Use
Common Lisp, http://www.psg.com/~dlamkins/sl/appendix-
a.html.

[9] Dave Thomas, Ubiquitous Applications: Embedded Systems
to Mainframe, Communications of the ACM Volume 38,
Issue 10 (October 1995).

[10] Visual Language Research Bibliography
http://cs.oregonstate.edu/~burnett/vpl.html.

[11]http://wwhttp://cs.oregonstate.edu/~burnett/vpl.html#V2A4w.
usenix.org/publications/library/proceedings/dsl99/technical.h
tml

[12] Steven T. Karris, Signals and Systems with MATLAB
Applications, Orchard Publications, 2001.

[13] http://www.bricklin.com/visicalc.htm.
[14] http://www.pictorius.com/.
[15] http://www.maplesoft.com/products/.

[16] http://www.wolfram.com/.
[17] W. Piersol, Object Oriented Spreadsheets: The Analytic

Spreadsheet Package, Proceedings of ACM OOPSLA,
September 1986, 385-390.

[18] R. Jamal, L. Wenzel, The Applicability of the Visual
Programming Language LabVIEW to Large Real-World
Applications, 11th International IEEE Symposium on Visual
Languages, September 05 - 09, 1995.

[19] DSL’97, First ACM SIGPLAN Workshop on Domain
Specific Languages, January 18, 1997.

[20] Domain Engineering and Domain Analysis,
http://www.sei.cmu.edu/str/descriptions/deda.html.

[21] P. Hudak, Building Domain-Specific Embedded Languages,
ACM Computing Surveys, 28(4es): 196-198, December
1996.

[22] http://caselaw.lp.findlaw.com/cgi-
bin/getcase.pl?court=US&vol=378&invol=184

[23] Kim Clohessy, Brian M. Barry, and Peter Tanner, “New
Complexities in the Embedded World – The OTI Approach”,
Object-Oriented Real-Time Systems Workshop, ECOOP 97,
Jyväskylä, Finland, June 9-13, 1997. Also in Lecture Notes
in Computer Science 1357 Springer 1998, ISBN 3-540-
64039-8, Pp. 472-481.

[24] Dave Thomas, Visual Application Development – Lessons
from the IBM VisualAge Experience, Keynote IEEE
Symposium on Visual Languages, 1997.

[25] Haruo Hosoya and Makoto Murata. Validation and boolean
operations for attribute-element constraints. In Programming
Languages Technologies for XML (PLAN-X), pages 1-10,
2002 .

[26] Richard P. Gabriel and Guy L. Steele, The Evolution of Lisp,
ACM Conference on the History of Programming Languages
II, for an unabridged version see
http://www.dreamsongs.com/NewFiles/HOPL2-Uncut.pdf.

[27] CLIPS A Tool for Building Expert Systems,
http://www.ghg.net/clips/CLIPS.html.

[28] ICLP’03, the Nineteenth International Conference on Logic
Programming, http://www.tcs.tifr.res.in/~iclp03/.

[29] The Rule Markup Initiative, http://www.dfki.uni-
kl.de/ruleml/.

[30] OMG Business Rules in Models RFI,
http://www.omg.org/techprocess/meetings/schedule/Business
_Rules_in_Models_RFI.html.

[31] Dave Thomas: “Computational Diversity, Practice and a
Passion for Applications”, in Journal of Object Technology,
vol. 2, no. 3, May-June 2003, pp. 7-12,
http://www.jot.fm/issues/issue_2003_05/column1.

[32] Kdb for DBAs, Kx Systems Inc., 2001.
[33] http://www.fscript.org/

7

