
Over the last 10 years, Smalltalk has moved from
the “Parc” to Main Street as a standard object-ori-
ented (OO) fifth generation language (5GL) for
enterprise computing. To meet the needs of appli-
cation developers, Smalltalk environments and tools
have matured from the original research implemen-
tations to full-featured, multiplatform development
environments. A recent study of development tools
conducted by Software Productivity Research in
Massachusetts for a software productivity consor-
tium ranked Smalltalk first in most categories. What
is surprising about this study is the application: a
demanding telephone switch traditionally dominat-
ed by C or proprietary talc languages such as Chill,
Protel, and Plex. The fact that Smalltalk ranked so
highly is a testimony that Smalltalk is an application
5GL that scales. This article discusses the major
technical challenges addressed by Smalltalk imple-
mentors and application developers working on a
wide spectrum of applications.

Multiplatform Portability of Applications
and Objects
Smalltalk originally used proprietary Xerox work-
stations with integrated graphical displays. The
early 1980s saw the development of efficient imple-
mentation techniques, including sophisticated
method caches and generation-scavenging garbage
collection, that allowed the implementation of
compact interpreters for popular PCs and efficient
32-bit implementations for workstations. These
techniques form the basis for modern commercial
Smalltalk offerings, including VisualAge, Visual
Smalltalk, and VisualWorks.

To support a variety of platforms, Smalltalk uses a
virtual machine approach to portability that allows
applications to be easily migrated between platforms
with little or no change to the code. While applica-
tion code portability was a problem Smalltalk solved
early, application developers quickly encountered
the need to persistently store and communicate

112 October 1995/Vol. 38, No. 10 COMMUNICATIONS OF THE ACM

Ubiquitous
Applications:
Embedded Systems
to Mainframe

Dave Thomas

smalltalk
O

b
j
e

c
t

T

e
c

h
n

o
l
o

g
y

Smalltalk objects. Smalltalk implementors respond-
ed with object filing and swapping enhancements
that allow objects, including cyclic ones, to be
moved efficiently between images with transparent
data translation.

The Smalltalk-80 MVC, which first appeared in
the Apple Lisa personal computer, inspired many of
the modern window and mouse-based interfaces.
While Smalltalk originally provided the complete
interface, recent implementations provide full sup-
port for multiplatform graphical user interfaces
(GUIs) portability, including support for native wid-
gets. Today’s implementations include the ability to
easily interoperate with other languages and plat-
form capabilities via system application program
interfaces. This allows the integration of Smalltalk
and C to combine the best application language
with the best systems programming language.

Source Code Control, Configuration Management,
and Collaborative Development
Early development experiences supported by the
Canadian Department of National Defense pointed
out the need for team programming, configuration
management, and development tools integrated with
the Smalltalk development environment. This
research effort led to the development of Orwell [5]
and its commercial successor ENVY/Developer.
These tools allow groups of developers to concur-
rently share fine-grained collections of classes known
as applications or packages. Orwell introduced the
concepts of component ownership, class extensions,
and configuration maps to allow developers to work
together in a shared, distributed image.

The ability to manage large class libraries across
multiple development teams has been a critical suc-
cess factor for many engineering and information
technology organizations adopting Smalltalk. It is
important to note the technology is only a contribut-
ing factor since the real challenge is making the 90-
degree shift from a vertical functional structure to a
horizontal component-based organization.

Enabling Client-Server Computing
During the past three years, Smalltalk has been aug-
mented with tools for building graphical interfaces
that allow the construction of portable GUIs. In order
to make Smalltalk more accessible, visual program-
ming tools, such as Fabrik, InterCONS, Parts, and
VisualAge, allow end users to program by connecting
visual components and operations.

In many applications, legacy requirements or

online transaction processing (OLTP) performance
requires support for existing relational and file sys-
tems. Additional class libraries for communications,
transaction processing, and routine tasks such as
report generation complete the suite of client/server
tools. All commercial systems include database access
frameworks that allow application programmers to
access data from virtually any database. One of the
design problems is how to efficiently, yet simply, map
data between record/tuples and objects. Recent tools
and frameworks, such as ObjectLens, have reduced
the complexity for the application programmer, but
as yet no products for high-performance transparent
persistence interfaces compete against native access
to static structured query language (SQL) or transac-
tion processing (TP) facilities.

Clearly an OO database provides an alternative
for storing Smalltalk objects, and vendors have
responded to customer demand for Smalltalk
clients by providing interfaces to their object
servers. These are promising for new green-field
applications and specialized applications such as
multimedia or CAD.

Embedded Smalltalk: Can You Run It in a Watch?
Productivity has lead some developers to consider
Smalltalk for embedded applications. These applica-
tions have limited RAM and ROM budgets, making
them very different from workstation-based applica-
tions. During the process of embedding Smalltalk
into Tektronix oscilloscopes (TDS 500 series) [2], we
worked with Tektronix engineers to provide a series
of tools for embedded system development and deliv-
ery. We customized the virtual machine to support
separate RAM and ROM spaces for both code and
data and provided tunable garbage collection, inlin-
ing of dynamic initialization code, and numerous
space optimizations.

A tool called a packager allows the “ROMing engi-
neer” to selectively place individual classes, methods, or
instances into application/product-specific RAM and
ROM. Packaging, unlike linking, which adds modules
into a build process, removes unneeded development
tools and components from the shared development
environment. The Tektronix oscilloscopes have 512K
of ROM and 32K of RAM. This is perhaps surprising for
a language that is supposedly very large. The same tech-
nology was used to package DCS DbPublisher [4], a
512K PC-based Smalltalk/V application, into a 384K
full-function database publishing product. The devel-
opment tools [3] provide separate target and develop-
ment images to support cross development.

COMMUNICATIONS OF THE ACM October 1995/Vol. 38, No. 10 113

The ability to manage large class libraries
across multiple development teams has been
a critical success factor for many engineering and information

technology organizations adopting Smalltalk.

The use of a compact, customizable virtual
machine technology allows the virtual machine to be
tailored to the product, supporting specialized
embedded resources such as cache, on-chip
RAM/ROM, digital signal processors (DSPs), and
low-power execution. This flexibility allows Texas
Instruments’ ControlWorks [1] to use Smalltalk in
the embedded controllers as well as in application-
level tools for wafer fabrication. Embedded applica-
tions need to be carefully designed and do not readi-
ly evolve from workstation prototypes with
unconstrained resources. Specialized frameworks
and considerable expertise are needed to deploy
applications in constrained environments, such as
personal digital assistants.

Mainframe Smalltalk: Can it Run Under CICS?
While multilevel client-server architectures seem to
be the wave of the future, a large percentage of cor-
porate data still lives in mainframes. For many appli-
cations it is much more efficient and simple to run
portions of the Smalltalk application on the host plat-
form where the methods can run efficiently against
the data. Much to the surprise of many, IBM has just
introduced MVS Smalltalk, which allows server por-
tions of a distributed Smalltalk application to execute
on a CICS/DB2 or IMS mainframe.

The substantial technical challenges of developing
MVS Smalltalk include running cross development,
packaging small transaction program images, execut-
ing multiple transactions against the same transac-
tion application, and integrating with host resources
such as transaction monitors and databases. Its avail-
ability means Smalltalk can be used across all plat-
forms in the business enterprise. This allows the
application designer to place portions of the applica-
tion in the most appropriate processor for security
and performance.

Distributed Smalltalk and Server Smalltalk
The message-oriented nature of Smalltalk makes it a
natural for concurrent and distributed object com-
puting. However, the symbolic nature of Smalltalk
relies heavily on a single, shared object space, and
such issues as safe multithreading and concur-
rent/distributed garbage collection need to be
addressed to build large-scale applications. Despite
several early research projects, industrial offerings
have only recently begun to appear. Hewlett-
Packard was the first to introduce a distributed
Smalltalk compliant with the Object Management
Group (OMG) object request broker (ORB) specifi-
cation followed closely by IBM with a distributed sys-
tem object model (DSOM) implementation. These
activities led to the definition and adoption of an
OMG-approved Smalltalk ORB binding. IBM recent-
ly demonstrated a distributed Smalltalk based on a
uniform address space.

Several research projects including Actra and
Actalk have investigated concurrent Smalltalk.

With the widespread availability of symmetric mul-
tiprocessing (SMP) servers, it is likely we will see
true multithreaded, multiprocessor implementa-
tions in the near future. Research on massively par-
allel processor (MPP) systems, as exemplified by
Coda, explores how Smalltalk can be scaled to mas-
sively parallel systems. Both shared object space
and communicating object space are likely to be
supported since each offers advantages for specific
applications.

These implementations have been used successful-
ly in pilot and prototype industrial projects, but more
experience is required to determine the program-
ming models, tools, and transaction services needed
to support the development of mission critical dis-
tributed multithreaded applications.

Conclusion
Smalltalk has succeeded where other high-productiv-
ity environments such as Lisp, APL, Forth, Prolog,
and to some extent Basic have failed. These lan-
guages promised interactive, incremental develop-
ment in a supporting environment, in some cases
with libraries of tools and components. Unlike popu-
lar proprietary 4GLs, Smalltalk is a standard 5GL that
scales. Critical success factors for Smalltalk are porta-
bility, collaborative development, packaging, stan-
dard class libraries, and scaling from single user to
distributed applications.

While challenges remain in embedded, distrib-
uted, and server Smalltalk research and practical
experience suggest that these areas will be addressed
in the near future. Given continued research and
development, Smalltalk applications can be deployed
from a mainframe to a wrist watch. This makes
Smalltalk a ubiquitous application development envi-
ronment.

References
1. Barry B. Smalltalk as a Development Environment for Inte-

grated Manufacturing Systems. In Proceedings of the Inter -
national Conference on Object-Oriented Manufacturing
Systems. Division of Manufacturing Engineering, Univ. of
Calgary, 1992.

2. Dotts, A., Birley, D. Developer of reusable test equipment soft-
ware using Smalltalk. In Proceeedings of OOPSLA 92. Addendum
to the Proceedings, OOPS Mess. 4, 2 (Apr. 1993), pp. 31–36.

3. Duimovich, J. Milinkovich, M. Smalltalk and embedded Sys-
tems. Dr. Dobb’s J. 181 (Oct. 1991), 86–95.

4. Thomas, D., Best, R. Dbpublisher—Tex in shining armor: An
integrated system combining Tex and Smalltalk. Woodman 89:
Workshop on Object-Oriented Document Manipulation,
Rennes, France (May 29–31, 1989), pp. 280-285.

5. Thomas, D., Johnson, K. Orwell: A configuration management
system for team programming. Special issue of Sigplan Not. 23,
11 (Nov. 1988), 135–141.

David Thomas is founder and CEO of Object Technology International, Inc.
(OTI), Ontario, Canada.

©ACM 0002-0782/95/1000 $3.50

C

114 October 1995/Vol. 38, No. 10 COMMUNICATIONS OF THE ACM

